广州地区天气分型和降水预估

发布时间:2018-07-23 09:41
【摘要】:广州位于我国沿海珠江三角洲城市群区,常年受季风影响,是强降水和城市内涝的灾害高频区。本文采用广州增城站1990年1月至2013年9月的小时观测资料、地面和高空 925hPa、850hPa、700hPa、600hPa、500hPa 的 JRA55 再分析资料、CMA热带气旋最佳路径、日本气象厅地面天气图、历史模拟和RCP2.6、RCP4.5、RCP8.5三种典型路径下的IPSL-CM5A模式资料,通过天气分型和降水量预估的方法分析了降水天气特征和局地气候变化。首先,通过主成分分析、聚类分析和判别分析建立CA(Cluster Analysis)天气分型并通过逐步logistic回归和非线性回归建立日降水量模拟。CA天气分型共包括38种天气型,其中包括6种台风天气型,分别对应着台风位于增城以西、附近、以南、以北、附近(多发于春秋)和多天气系统联合影响这六种情况。降水模拟中,对于总降水事件和台风降水事件,小雨和中雨的模拟效果较好,大雨的模拟效果有待于提高。其次,通过SOM神经网络法建立SOM(Self-Organizing Map)天气分型并分析各型的气候意义及主要降水类。SOM天气分型共包括20种天气型,分布于4X5 SOM神经网络中,可识别出冬季风和夏季风的典型天气形态,沿神经网络边界逆时针旋转的高频天气型年循环,和三种降水天气类,分别为:前汛期锋面类、后汛期台风类和非汛期冷高压类。然后,通过统计降尺度,将历史模拟和RCP2.6、RCP4.5、RCP8.5三种典型路径下的IPSL-CM5A模式逐日区域格点资料降尺度成逐时站点资料。此统计降尺度方法的降尺度数据在增城有较好的模拟效果,可准确反应出各气象要素的日循环和年循环等特征,并表现出各气象要素在不同情景下21世纪内的时间变化。RCP2.6情景下,在21世纪初期至中期,增城区域温度约升幅2℃,高温日年频率升至约60天,21世纪中期至末期,温度变化不大;在21世纪内,湿度条件近乎不变。RCP4.5情景下,增城区域温度升高、湿度减小,变化强度介于RCP2.6和RCP8.5之间。RCP8.5情景下,升温幅度最大,在21世纪末会有更多的高温日,湿度减弱,10m风速中北风分量减弱,高空西风带减弱。最后,依据统计降尺度后的模式数据,基于CA天气分型降水量模拟和SOM天气分型分析,预估未来降水形势。两种天气分型的预估结果相似:(1)三种典型情景下,21世纪均会有更热更旱的趋势;降水日数减少但平均日降水量变化较小,受台风影响的频数和总降水量减少,极端降水事件可能增加,极端降水事件和台风带来的灾害可能增加。(2)三种典型情景之间,RCP8.5的降水发生于更热更旱的天气型中的可能性最大,其次为RCP4.5,RCP2.6的可能性最小。SOM天气分型未来降水预估中,在21世纪末期,RCP8.5的主要降水事件性质发生变化,由暖湿的天气型(4,1)转而集中于热干的天气型(1,1)中;RCP4.5情景下也有此变化趋势,但变化程度偏小;RCP2.6中主要降水事件依旧集中于天气型(4,1)中。
[Abstract]:Guangzhou is located in the urban agglomeration of the Pearl River Delta along the coast of China. It is affected by monsoon and is the high frequency area of heavy rainfall and urban waterlogging. This paper uses the observation data of Guangzhou Zengcheng station from January 1990 to September 2013, the JRA55 reanalysis data of the ground and high altitude 925hPa, 850hPa, 700hPa, 600hPa, 500hPa, and the best path of the CMA tropical cyclone. The ground weather map of the Japan Meteorological Office, the historical simulation and the IPSL-CM5A model data under three typical paths of RCP2.6, RCP4.5 and RCP8.5 are used to analyze the precipitation weather characteristics and local climate change through the weather classification and the precipitation prediction method. First, the CA (Cluster Analysis) weather points are established by the principal component analysis, the cluster analysis and the discriminant analysis. 38 types of weather patterns, including 6 types of typhoon weather patterns, are composed of 6 types of weather patterns, which correspond to the six types of combined effects of typhoon located in the west of Zengcheng, South, north, near (mostly in spring and Autumn) and multi day gas system, respectively, in precipitation simulation. The total precipitation events and typhoon precipitation events, the simulation effect of the rain and the rain are better, the simulation effect of the heavy rain needs to be improved. Secondly, the SOM neural network method is used to establish the SOM (Self-Organizing Map) weather classification and to analyze the climatic significance of each type and the main precipitation type.SOM weather types, including 20 types of weather patterns, distributed in the 4X5 SOM neural network. In the collaterals, the typical weather patterns of the winter monsoon and the summer monsoon are identified, the high frequency synoptic cycle that rotates clockwise along the neural network boundary, and three kinds of precipitation weather types, respectively, the front season front, the late flood season typhoon and the cold and high pressure in the non flood season. Then, the historical simulation and the RCP2.6, RCP4.5, and RCP8.5 codes are made through the descending scale. The IPSL-CM5A model has a good simulation effect in Zengcheng, which can accurately reflect the characteristics of the daily cycle and the annual cycle of the meteorological elements, and show the time changes of the meteorological elements in the different scenarios in twenty-first Century. In the period of.RCP2.6, in the early and middle period of twenty-first Century, the temperature of Zengcheng region rose about 2 degrees C, the frequency of high temperature rose to about 60 days, and the temperature changed little in the middle to the end of twenty-first Century. In twenty-first Century, the humidity condition was almost unchanged in the.RCP4.5 situation, the temperature of Zengcheng region increased, the humidity decreased, and the change intensity was in the.RCP8.5 scenario between RCP2.6 and RCP8.5. In the end of twenty-first Century, there will be more hot days and more high temperature days in the end of twenty-first Century, the humidity is weakened, the north wind component in the 10m wind speed is weakened, and the high altitude westerly belt is weakened. Finally, based on the model data of the descending scale, based on the CA weather precipitation simulation and the SOM weather classification analysis, the future precipitation situation is estimated. The prediction results of the two types of weather classification are similar. (1) under the three typical scenarios, there will be a hotter and more drought trend in twenty-first Century; the number of precipitation days decreases but the average daily precipitation changes smaller, the frequency and total precipitation affected by the typhoon are reduced, the extreme precipitation events may increase, the extreme precipitation events and typhoons can increase. (2) three typical scenarios, the precipitation of RCP8.5 The most hot and dry weather pattern is most likely, followed by RCP4.5, RCP2.6, the minimum possibility of.SOM weather classification in the future precipitation prediction, in the late twenty-first Century, the main precipitation events of the RCP8.5 changed from the warm wet weather type (4,1) to the hot dry weather type (1,1); but the RCP4.5 scenario also has this trend, but there is this change trend, but the RCP4.5 situation also has this trend. The main precipitation events in RCP2.6 are still concentrated in the weather pattern (4,1).
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P426.6;P44

【参考文献】

中国期刊全文数据库 前10条

1 徐明;赵玉春;王晓芳;汪小康;;华南前汛期持续性暴雨统计特征及环流分型研究[J];暴雨灾害;2016年02期

2 李晓丽;杨涛;;珠江流域2015~2100年降水及气温的时空变化预测[J];水电能源科学;2015年11期

3 查书瑶;伊兰;赵平;;冬季华南准静止锋的结构和类型特征研究[J];大气科学;2015年03期

4 王娜;陈星;程寿全;;广州增城台风降水相关天气型[J];南京大学学报(自然科学);2014年06期

5 万夫敬;袁慧玲;宋金杰;王元;;南京地区降水预报研究[J];南京大学学报(自然科学版);2012年04期

6 顾伟宗;陈丽娟;李维京;陈德亮;;降尺度方法在中国不同区域夏季降水预测中的应用[J];气象学报;2012年02期

7 闵晶晶;孙景荣;刘还珠;王式功;曹晓钟;;一种改进的BP算法及在降水预报中的应用[J];应用气象学报;2010年01期

8 赵玉春;王叶红;;近30年华南前汛期暴雨研究概述[J];暴雨灾害;2009年03期

9 强学民;杨修群;;华南前汛期开始和结束日期的划分[J];地球物理学报;2008年05期

10 田宏伟;谈建国;杜子璇;;用TSI天气分型方法分析上海环境空气质量[J];气象与环境科学;2008年01期



本文编号:2138994

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2138994.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户be934***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com