圆形基坑主动土压力计算方法研究
[Abstract]:Under the influence of circumferential arch effect, the active earth pressure of circular foundation pit is smaller than that of straight side foundation pit. However, in the practical engineering design, due to the lack of perfect theoretical basis and the corresponding calculation method, the designers often use the plane earth pressure theory to calculate the earth pressure of circular foundation pit, which leads to the increase of cost and the waste of resources. In this paper, the calculation model of elastic-plastic problem of circular foundation pit is improved, and the calculation formula of active earth pressure is derived by using axisymmetric slip line method and upper limit method of limit analysis. The influence factors of principal stress coefficient in circular foundation pit soil are calculated and analyzed by numerical simulation method. The main contents are as follows: (1) in the elastic-plastic space axisymmetric problem of circular foundation pit, the toroidal stress is the intermediate principal stress. In this paper, the intermediate principal stress coefficient b, which is assumed to be 蟽 2 = 蟽 胃 = 蟽 3 b (蟽 1- 蟽 3), is introduced to improve the HaarKarman complete plasticity assumption of 蟽 2 = 蟽 1 or 蟽 2 = 蟽 3, which is widely used in the calculation, so that it is more suitable for engineering practice. (2) the slip line field theory is used. The slip line equation of space axisymmetric problem is derived. By simplifying the slip curve of the soil behind the wall into a straight line form and solving the slip line equation, the calculation formula of the earth pressure of the circular foundation pit is obtained, and the distribution model of the earth pressure is analyzed. The results show that the earth pressure of circular foundation pit is nonlinear distribution with the increase of depth, but it can be regarded as a linear distribution form in a shallow range. In addition, the influence of foundation pit radius on earth pressure is analyzed. The results show that the earth pressure increases with the increase of radius and eventually tends to plane Rankine earth pressure. (3) the upper limit method of limit analysis is used. At the same time, the calculation formula of the earth pressure force of circular foundation pit is derived by introducing the coefficient of intermediate principal stress b and considering the internal energy dissipation caused by the work of circumferential stress. The calculated results show that the earth pressure corresponding to different principal stress coefficients b is obviously smaller than that under plane condition. When the radius tends to be very large, the corresponding result of b tends to be the same, that is, the value of Rankine earth pressure in plane case. In addition, when the slope of the failure surface of circular foundation pit is greatly affected by the principal stress coefficient, the larger the slope angle of soil failure surface is, the smaller the slope angle of soil failure surface is, and the smaller the slope angle of soil failure surface is with the increase of radius of circular foundation pit. When the excavation radius is large enough, the slope of the failure surface tends to be 45 掳蠁 / 2. (4) through finite element calculation, the influencing factors of principal stress coefficient and its variation law in circular foundation pit are analyzed. The results show that the radius of foundation pit and the internal friction angle of soil are the main factors affecting the value of the coefficient of principal stress, but the influence of cohesion is small. The smaller the radius of foundation pit and the angle of internal friction, the larger the coefficient of principal stress is and tends to 1.0. In order to facilitate practical engineering application, the author gives the suggested value of principal stress coefficient in the soil of circular foundation pit through a lot of calculation and analysis.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU432
【相似文献】
相关期刊论文 前10条
1 喻泽红;王勇智;王代;;基于能量理论的主动土压力的计算[J];西部探矿工程;2006年02期
2 胡晓军;;粘性土主动土压力库仑精确解的改进[J];岩土工程学报;2006年08期
3 李富盈;王勇智;;能量理论法计算主动土压力探讨[J];河南科学;2006年06期
4 陈素清;王岩法;;悬臂支护结构主动土压力分析研究[J];浙江水利科技;2006年06期
5 秦四清;李晓;;非线性库仑主动土压力分析理论[J];岩石力学与工程学报;2006年12期
6 官盛飞;凌建明;赵鸿铎;;刚性挡墙主动土压力的有限元分析[J];勘察科学技术;2007年06期
7 刘福臣;邵慧;;考虑开挖情况主动土压力计算[J];水运工程;2008年12期
8 吴爱民;江全胜;肖兵;张尚根;;主动土压力与位移关系试验研究[J];常州工学院学报;2008年S1期
9 陈兴亮;段德贵;熊传祥;;基坑工程桩墙结构主动土压力研究[J];岩土工程界;2009年01期
10 王作伟;杨小礼;;水平地震力对非线性主动土压力上限解的影响[J];矿业工程研究;2009年03期
相关会议论文 前10条
1 秦四清;李晓;;非线性库仑主动土压力分析理论[A];中国科学院地质与地球物理研究所2006年论文摘要集[C];2007年
2 张永进;陈永辉;;悬臂支护结构上主动土压力受位移影响分析[A];岩土力学的理论与实践——第三届全国青年岩土力学与工程会议论文集[C];1998年
3 贾萍;赵均海;冯红波;杨青顺;;空间主动土压力简化计算及参数分析[A];第16届全国结构工程学术会议论文集(第Ⅱ册)[C];2007年
4 陈贺;蒋明镜;张望城;肖俞;;刚性挡土墙平移模式下主动土压力的理论分析[A];第十一届全国土力学及岩土工程学术会议论文集[C];2011年
5 柯才桐;陈奕柏;高洪波;谢洪波;;条形荷载下黏性土主动土压力计算[A];《岩土力学》vol.34 增刊1 2013[C];2013年
6 张年学;李晓;;极限平衡平顶垂直坡的新公式[A];第八届全国工程地质大会论文集[C];2008年
7 章瑞文;徐日庆;郭印;;考虑土层剪力作用的挡土墙主动土压力分布研究[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(下册)[C];2006年
8 张永兴;陈林;陈建功;;地震作用下挡土墙主动土压力分布与侧压力系数[A];自主创新与持续增长第十一届中国科协年会论文集(1)[C];2009年
9 叶建科;麦远俭;;重力式岸壁码头位移调查与分析[A];中国土木工程学会港口工程分会第七届港口工程技术交流会论文集[C];2011年
10 宋飞;张建民;;超固结土的主动土压力求解方法[A];第二届全国岩土与工程学术大会论文集(上册)[C];2006年
相关博士学位论文 前1条
1 章瑞文;挡土墙主动土压力理论研究[D];浙江大学;2007年
相关硕士学位论文 前10条
1 李东阳;基于土拱效应和剪应力作用的挡土墙主动土压力分析[D];郑州大学;2015年
2 李云凤;考虑挡土墙位移模式和位移大小的主动土压力研究[D];安徽建筑大学;2015年
3 何小花;主动土压力分析方法改进和挡土墙相关设计标准研究[D];中国水利水电科学研究院;2015年
4 王河;绕墙底转动挡土墙非极限状态主动土压力研究[D];太原理工大学;2016年
5 黄彬彬;考虑挡土墙位移模式的地震主动土压力拟动力研究[D];南京大学;2013年
6 杜林;地震作用下重力式挡墙永久位移分析[D];西南交通大学;2016年
7 田恒银;挡土墙主动土压力计算的研究[D];重庆大学;2016年
8 鹿兴;考虑土拱效应挡土墙主动土压力研究[D];天津大学;2014年
9 马欢雄;圆形基坑主动土压力计算方法研究[D];西南交通大学;2017年
10 胡小刚;基坑主动土压力与支护结构位移的关系研究[D];南京航空航天大学;2006年
,本文编号:2178235
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2178235.html