单连通区域上全纯自同构的拓扑共轭分类
[Abstract]:In this paper, the topological conjugate classification of Holomorphic automorphism on a simple connected domain is introduced. We say that the two transformations f: X X and g: y y are topological conjugate, if there is a homomorphism h: X y such that h (?) FG (?) h, here (?) Is a composite of maps. Simple connected regions mainly include: complex plane, extended complex plane, unit disk and upper half plane. On topological conjugate classification of Holomorphic automorphism on complex plane Budnitska obtained a more general conclusion that is topological conjugate classification of affine operators on finite dimensional vector space. In particular, if the affine operator f (x) n Ax b has a fixed point, then f topology conjugates to its linear part A, and if the affine operator f: U U U has no fixed point, We prove that f topology is conjugate to an affine operator g: U, where U is the orthogonal direct sum of the invariant subspace V and W of g on V, g V is an affine operator with a standard orthonormal base of V in the following form. N (x 11 1 + x 2n 1, 蔚 xn), 蔚 = 卤1), which is the limit g W on W determined only by f is a linear operator of the standard orthogonal base of W given by nilpotent Jordan matrix. Is determined only by f. For topological conjugate classification of fractional linear transformations on extended complex plane, the corresponding results have been given for Rybalkina and S ergeichuk. The topological conjugate classification of Holomorphic automorphism on complex plane and extended complex plane is summarized. The topological conjugate of Holomorphic automorphism on unit disk and upper half plane has not been completely classified before. This article will give the answer to this question. By means of rotation theory and the method of constructing homeomorphism, we prove that all Holomorphic automorphisms without fixed points on the upper half plane (unit disk) are topological conjugate; Two Holomorphic automorphisms f and g with fixed points are topological conjugate if and only if 蟻 (f) = 卤蟻 (g) mod Z, and between Holomorphic automorphism without fixed point and Holomorphic automorphism with fixed point is not topological conjugate.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O189.11
【相似文献】
相关期刊论文 前10条
1 邹成;;关于二次函数的拓扑共轭[J];甘肃联合大学学报(自然科学版);2007年01期
2 代莉;;拟移位映射与移位映射拓扑共轭[J];怀化学院学报;2009年02期
3 吴庆初;刘华祥;曾广洪;;帐篷映射的几何构造方法[J];江西师范大学学报(自然科学版);2006年02期
4 刘喜玲;;拓扑空间中的拓扑共轭在迭代中的运用[J];河南科技学院学报(自然科学版);2007年01期
5 张莹;;弱遍历自同胚映射拓扑共轭的等价条件[J];天津师范大学学报(自然科学版);2008年02期
6 张无畏;一种区间映射混沌集的构造[J];华东师范大学学报(自然科学版);1999年01期
7 刘俊鹏;;关于初值敏感依赖性在拓扑共轭下保持的证明[J];洛阳师范学院学报;2012年11期
8 陈凤娟;双边符号空间上的一类拟移位映射[J];浙江师范大学学报(自然科学版);2004年01期
9 李自来;王延庚;卫国;;加法机器拓扑共轭嵌入到拓扑动力系统中的充要条件[J];西北大学学报(自然科学版);2011年05期
10 王立娟;廖公夫;;3阶Feigenbaum映射的拓扑共轭性[J];数学学报;2006年04期
相关硕士学位论文 前4条
1 潘啸天;低维紧致连通李群上平移作用的拓扑共轭分类[D];吉林大学;2015年
2 常伟;单连通区域上全纯自同构的拓扑共轭分类[D];吉林大学;2017年
3 冯上期;Rule 57的拓扑动力性质的研究[D];华南理工大学;2011年
4 毛静丽;符号空间的理论[D];华中师范大学;2012年
,本文编号:2234970
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2234970.html