基于卫星和再分析数据的大气水循环变量比较和分析
[Abstract]:Water cycle refers to the cyclic movement of water in the geo-atmospheric system by means of evaporation, precipitation and runoff under the action of solar radiation and gravity. The atmospheric physical quantities involved include water vapor in the atmosphere, water condensate in clouds and precipitation. Water cycle is constrained by both the climate system and, in turn, by affecting atmospheric circulation. The water cycle variables involved in this paper mainly include two categories, i.e. water condensate and water vapor. Several kinds of water condensate data, including ISCCP, MODIS and Cloud Sat, and reanalysis data CFSR and ERA, were used to compare the horizontal and vertical distribution characteristics of climatic state and seasonal variation of water condensate in China and its surrounding areas, and to evaluate the uncertainty of water condensate between different data. In the latter case, we mainly use the Microwave Imager (TMI) carried by TRMM to study the diurnal variation characteristics of water vapor over the tropical ocean. The results show that MODIS, ERA and CFSR data show high consistency in describing the whole China and the whole week. The absolute value and amplitude of variation of MODIS data are the largest, CFSR on land is not much different from other data, and ERA is relatively small. In contrast, although ISCCP can also capture the horizontal distribution of the total amount of water condensate. There are some main features of regional monthly variations, but there are some differences in some specific details and spatial and temporal correlations with the other three types of data, and the absolute values and amplitudes of variations are minimal. Especially, the liquid water content of ERA is higher than that of CFSR. The above differences lead to more than 60% uncertainty of LWP in climate sensitive areas such as the low latitude ocean surface and the southern side of the Qinghai-Tibet Plateau, which needs to be paid enough attention. In addition to Yunnan-Guichuan area, the "uncertainty" of other areas is large, in which MODIS data is the highest, followed by CFSR. ERA ice water content accounts for the lowest proportion of total condensate, and its absolute value is also the lowest. It is found that the cloud-water path in summer is higher than that in winter in most parts of China. The seasonal variation of water condensate in China and its surrounding areas is remarkable. Different data are similar in reflecting the seasonal distribution of cloud-aquatic products, but the observed data ISCCP, MODIS, reanalysis data CFSR, ERA are significantly different in the high value centers of IWP. The distribution is affected by topography, atmospheric circulation, water vapor transport and other factors. The liquid water content in southern China is obviously higher than that in northern China for the vertical distribution of water condensate. Regarding the vertical distribution of ice water content, the ice layers of CFSR and ERA are deeper than that of CPR, and the values of model data are also different from those of observation data, indicating that the model may overestimate the thermodynamic process of cloud in China. The ice cloud parameterization scheme of the model is still larger than that of observation. All in all, the observed data ISCCP, MODIS, CPR and reanalysis data ERA, CFSR are basically similar in reflecting the condensate in China and its surrounding areas, but because of the different satellite instruments and the different parameterization schemes used in different models, the values of the condensate reflected by different data are also quite different. Again, it is emphasized that there are possible sources of errors (some of which are even insurmountable) for different water condensate data, such as the inability to obtain cloud-water information under ice clouds based on observations from spaceborne passive spectral sensors, the criteria for cloud-water and ice-water partitioning based on cloud radar are questionable, and the parameterization of different models is questionable. Therefore, the purpose of this paper is not to determine which data is better for the condensate results, but only to point out the possible differences between the different data, so as to understand the degree of uncertainty in the analysis of the corresponding data, so as to better estimate the radiation of the cloud. On the other hand, studies of water vapor, another important variable in the water cycle, show that the water vapor distribution over the tropical ocean is decreasing from the equator to the poles, with water vapor mainly concentrated in the Bay of Bengal, the Indian Ocean, and Indonesia. Nearby waters, warm pools in the Pacific Ocean and equatorial convergence zones. Water vapor values are low along the Peruvian coast, the western coast of the United States and other water vapor subsidence zones. The diurnal variation of water vapor in some regions is generally of good periodicity, mainly 24 hours or 12 hours. The diurnal variation characteristics of water vapor in several typical regions on the ocean surface are analyzed by using the inverted water vapor data. The results show that the water vapor on the ocean surface generally has good periodicity, and the diurnal variation of water vapor in most regions is all. In addition, diurnal variations of water vapor in these regions may be affected by sea temperature, wind speed, and solar short-wave radiation.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P339
【相似文献】
相关期刊论文 前10条
1 ;上海出现新型环保水循环公厕[J];发明与创新;2004年02期
2 丑纪范;水循环基础研究的观念、方法、问题和可开展的工作[J];科技导报;2003年01期
3 壮歌德;王卓妮;;全球和地区水循环及科学发展[J];世界环境;2011年02期
4 熊永兰;;土地利用变化影响陆地水循环[J];地球科学进展;2011年07期
5 高维真;;水污染与水质测报技术讲座——第一讲:水循环与水污染[J];水文;1981年01期
6 刘春蓁;;关于水循环研究的若干问题[J];水文;1989年02期
7 尚随营;李兆斌;;“水圈和水循环”内容详析[J];地理教育;2011年10期
8 孙德佩;;古今漫话水循环[J];地球;1988年01期
9 于贵瑞,王秋凤;我国水循环的生物学过程研究进展[J];地理科学进展;2003年02期
10 刘昌明;黄河流域水循环演变若干问题的研究[J];水科学进展;2004年05期
相关会议论文 前10条
1 华伟南;;城市水循环改善的战略思考[A];中国原水论坛专辑[C];2010年
2 胡燕;;从系统论角度探讨水循环的教学方法[A];山地环境与生态文明建设——中国地理学会2013年学术年会·西南片区会议论文集[C];2013年
3 张光辉;;区域水循环过程与水资源演化规律——规范人类用水行为、确保社会经济可持续发展的重大科学基础[A];第四届全国青年地质工作者学术讨论会论文集[C];1999年
4 巩同梁;刘昌明;;环境变化条件下陆地表层系统水循环非均衡模式——水循环非均衡现象剖析与边际水循环概念[A];中国青藏高原研究会2006学术年会论文摘要汇编[C];2006年
5 李析男;胡彩虹;;城市水循环对城市供水量的影响分析[A];农业、生态水安全及寒区水科学——第八届中国水论坛摘要集[C];2010年
6 夏军;;变化环境下中国北方水循环与水安全研究面临的问题与展望(以华北地区水问题为例)[A];中国水力发电工程学会水文泥沙专业委员会第六届学术讨论会论文集[C];2005年
7 马智杰;徐小元;居江;;区域良性水循环的探讨和示范[A];中国水利学会2005学术年会论文集——节水型社会建设的理论与实践[C];2005年
8 马智杰;徐小元;居江;;区域良性水循环的探讨和示范[A];中国水利学会第二届青年科技论坛论文集[C];2005年
9 刘昌明;梁康;;作为水文科学基本理论的水循环研究若干探讨[A];中国水文科技新发展——2012中国水文学术讨论会论文集[C];2012年
10 孙廷春;;发展煤矿“水循环经济”[A];2007中国环境科学学会学术年会优秀论文集(上卷)[C];2007年
相关重要报纸文章 前10条
1 杜中 吴慧秀(河海大学);城市用水给自然水循环带来了挑战[N];中国水利报;2011年
2 李平 赵建平;流域时代的理性回归[N];中国水利报;2004年
3 慧聪;工业水循环:人类水危机的最后“救赎”[N];黄河报;2010年
4 王富;攀钢实现增产节水循环发展[N];中国矿业报;2006年
5 本报记者 杨勤;江苏:流动的水循环的路[N];中国水利报;2006年
6 钱建伟;1.4亿清除水循环“瓶颈”[N];苏州日报;2006年
7 周宾 陕西省社会科学院经济研究所;“易学”视野中的水循环[N];中国社会科学报;2012年
8 特约专家 齐兵强 全国节约用水办公室 博士;用水循环体系建设是特色[N];中国水利报;2006年
9 王勤;旨在破解当代水问题的力作[N];中国水利报;2008年
10 程晨;上海建成水循环公厕一吨水用“一辈子”[N];新华每日电讯;2003年
相关博士学位论文 前3条
1 毕彦杰;变化环境下流域/区域水循环特征与规律研究[D];中国水利水电科学研究院;2017年
2 李文生;流域水资源承载力及水循环评价研究[D];大连理工大学;2008年
3 刘佳嘉;变化环境下渭河流域水循环分布式模拟与演变规律研究[D];中国水利水电科学研究院;2013年
相关硕士学位论文 前10条
1 武猛;基于二元水循环理论的河北省用水量分析[D];河北农业大学;2015年
2 周杰;中国东北地区大气水循环的时空特征及其对降水的影响[D];扬州大学;2015年
3 顾磊;基于二元水循环模拟的泾河流域干旱危机诊断与调控研究[D];长安大学;2016年
4 乔石磊;启发式水循环算法及应用研究[D];广西民族大学;2016年
5 耿蓉;基于卫星和再分析数据的大气水循环变量比较和分析[D];中国科学技术大学;2017年
6 杨峰;健康水循环与新的水策略[D];西北农林科技大学;2007年
7 孟彩侠;基于不同方法的和田绿洲水循环要素变化特征研究[D];西安理工大学;2006年
8 章纯;水循环算法在结构优化设计中的应用及其在多目标中的改进[D];广东工业大学;2014年
9 马喜荣;黄河流域水循环流路的改变对物质输送及能量交换的影响[D];河海大学;2005年
10 许向君;城市水务系统循环规律与评价指标体系研究[D];山东农业大学;2007年
,本文编号:2243582
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2243582.html