不同误差订正方法在中国区域气候模拟中的比较和应用
[Abstract]:Climate models at the global and regional levels are the primary tools for modelling and predicting climate change. However, due to the complexity of the climate system and the level of scientific development, they are compared to contemporary climate modelling and observation. There are always more or less deviations, including average state and probability density distribution. If the climate model results are directly applied to driving the impact assessment models such as hydrology and agriculture, the deviation will have a great impact on the simulation, so it is necessary to carry out error correction work. In this study, the daily precipitation, daily mean temperature, daily maximum temperature and daily minimum temperature simulated by the RegCM4.4 regional climate model were revised by quantile mapping method driven by ERA-interm reanalysis data. In the study, the whole year is divided into four seasons: winter (December ~ February), spring (March ~ May), summer (June ~ August) and autumn (September ~ November). Firstly, the daily precipitation was revised, and the first half of the period from 1991 to 2010 (1991 ~ 2000) was used as the reference period. The transfer function was established, the later period (2001 ~ 2010) was revised and its effect was tested. By comparing the six different transfer function methods established by using parameter and non-parameter, it is found that the six methods can obviously reduce the error of precipitation simulation, and the relative performance of RQUANT is more prominent, that is, it is chosen as the main correction method. It is used to revise the simulated precipitation and temperature results of RegCM4. Applying the RQUANT method to the correction of daily precipitation, it is found that the deviation of the model can be greatly reduced after the error correction, and the relative error between precipitation and observation in most areas of China is concentrated within -25%. The spatial correlation coefficient can be greatly increased and the error standard deviation can be reduced, so that the precipitation is closer to the observed data in terms of distribution and numerical value, and the interannual variability of precipitation can also be improved to a certain extent. Because the effect of the model itself on temperature simulation is better than that of precipitation, the correction result of error correction is closer to that of observation, and the spatial correlation coefficient is more than 0.99. The average temperature simulated by RQUANT method is better than that of the model. The correction effect of daily maximum temperature and daily minimum temperature is very obvious, the deviation between the results of correction and observation in most areas of China is 卤1 掳C, the spatial correlation coefficient is increased, and the error standard deviation is reduced. The effect on the correction of temperature interannual variability is not obvious, but the spatial correlation coefficient in spring is obviously increased, and the error standard deviation of interannual variability is reduced. The RQUANT method also has a good correction effect for extreme events. The simulation deviation of four extreme event indices (CDD (continuous drought days), SDII (heavy precipitation index (), TXx () and TNn (annual extreme minimum temperature) is reduced. The spatial correlation coefficient is increased and the error standard deviation is reduced. The revised results are more in line with the observed data.
【学位授予单位】:中国气象科学研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P435
【相似文献】
相关期刊论文 前10条
1 史国宁;;日本的世界气候研究计划之一——气候模拟[J];气象科技;1983年01期
2 苗峻峰,W.LawrenGates;气候模拟[J];新疆气象;1995年02期
3 颜宏,赵俊英;有限区气候模拟侧边界嵌套误差分析及边界条件的研究[J];计算物理;1997年Z1期
4 ;气侯模拟志愿者全球分布:欧美人数众多[J];气象科技进展;2013年06期
5 温市耕;区域气候模拟[J];内蒙古气象;1996年01期
6 赵宗慈;“三维气候模拟引论”介绍[J];气象科学研究院院刊;1989年01期
7 欧阳首承,张建国,温丽叶;生态平衡分析方法的探讨——反射率气候模拟尝试[J];生态学杂志;1989年02期
8 刘永强,丁一汇;区域气候模拟研究[J];应用气象学报;1995年02期
9 ;气候模拟方法改进了天气预报[J];气象科技;1999年03期
10 潘建峰;国庆喜;王化儒;;山地小气候模型在帽儿山地区气候模拟中的应用[J];东北林业大学学报;2007年05期
相关会议论文 前8条
1 曾新民;刘金波;马柱国;吴志皇;熊仕焱;;改进陆面非均匀表示对区域气候模拟的影响[A];第26届中国气象学会年会全球和区域气候模式及极端天气气候事件的模拟研究分会场论文集[C];2009年
2 郑益群;于革;;2万年来东亚气候环境变化的区域气候模拟研究[A];中国气象学会2006年年会“气候系统模式发展与应用”分会场论文集[C];2006年
3 钟科;王汉杰;;区域气候模拟研究中的物理集合技术[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(下册)[C];2004年
4 张井贝;乐群;吕劲文;;RegCM3对中国东部区域气候模拟的性能检验[A];第八届长三角气象科技发展论坛论文集[C];2011年
5 吴涧;蒋维楣;刘红年;汤剑平;;在区域气候模拟中引入大气化学过程的初步研究[A];第五届全国优秀青年气象科技工作者学术研讨会学术论文集[C];2002年
6 张英娟;董文杰;;中国西北气候模拟及未来干旱情景预估[A];中国气象学会2007年年会气候变化分会场论文集[C];2007年
7 赵珊珊;张永山;邹旭恺;张强;;TAPM模式对三峡库区涪陵段的气候模拟[A];三峡库区强降水诱发地质灾害研究[C];2005年
8 胡轶佳;钟中;张耀存;;RegCM3对1998年夏季东亚区域月尺度气候模拟能力的检验[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(下册)[C];2004年
相关重要报纸文章 前1条
1 本报记者 王秋蓉;破解全球海洋环境气候模拟难题[N];中国海洋报;2008年
相关博士学位论文 前1条
1 张志富;一种用于气候模拟的分段积分法及其在荒漠化扩展敏感性试验中的应用[D];兰州大学;2008年
相关硕士学位论文 前4条
1 童尧;不同误差订正方法在中国区域气候模拟中的比较和应用[D];中国气象科学研究院;2017年
2 孙莉娟;土壤湿度年际异常对中国及欧亚春夏季气候模拟的影响[D];南京信息工程大学;2013年
3 朱涛;RegCM3.0与RegCM4.0对中国区域气候模拟的对比分析[D];南京信息工程大学;2012年
4 邹学智;南方双膜单栋塑料温室小气候模拟研究[D];南京信息工程大学;2013年
,本文编号:2281425
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2281425.html