钦州湾浮游植物群落结构变化及其影响因素分析

发布时间:2018-11-10 12:14
【摘要】:本文基于2013-11、2014-04、2014-08和2014-12钦州湾海域4个月份的现场调查数据,研究了浮游植物的群落结构特征及其与环境的适应,并采用PRIMER6进行多元统计分析,结果如下:调查期间,钦州湾共鉴定出浮游植物187种(包括变型和变种),其中硅藻门126种,占浮游植物出现种数的67.38%;甲藻门54种,占28.88%;金藻门2种,黄藻门、蓝藻门、定鞭藻门、裸藻门和隐藻门各1种。其中网采浮游植物6门54属134种;水采浮游植物8门71属148种。优势种季节间有明显的演替现象,除了球形棕囊藻外,其余均为硅藻,并多为广温性种。不同季节的浮游植物细胞丰度差异明显,网采与水采浮游植物在平面分布和季节变化上也不完全一致。网采丰度2014-08最高,2013-11最低;水采2014-12因棕囊藻丰度较大导致该月丰度最高。除2014-12月,其他3个月份浮游植物群落多样性指数及均匀度指数趋势基本一致且较高,物种较丰富,群落结构稳定性较高。2014-12棕囊藻爆发,对钦州湾浮游植物群落结构和生态系统稳定性造成影响。营养盐中DIN春夏季含量较低,平面分布总体南低北高;无机磷分布趋势较为规律,高值区主要分布在近岸附近,在2014-04春季出现高值区向外海转移的现象。使用PRIMER 6对钦州湾浮游植物群落进行多元统计分析,对四个月份进行CA聚类分析和MDS多维标度分析,结果均显示四个月份浮游植物群落结构存在差异。同时对群落差异性进行ANOSIM检验,显著性水平均为0.01,说明不同季节浮游植物群落差异极其显著。在成对检验中,各季节月之间浮游植物群落也差异显著。SIMPER分析中发现差异性种均是一些广温广盐种或暖温带近岸种,适宜钦州湾环境,同时网采和水采结果中引起差异的主要种基本一致。对各个月份环境因子PCA分析中,不同月份环境因子系数的差异表明不同时间环境因子表现出来的贡献率和作用不同。BIOENV分析发现,浮游植物细胞丰度与环境因子的相关系数大部分月份较高,说明丰度与环境因子之间有良好的相关性。四个月份与浮游植物生长相关性较高的是氮含量,以2013-11秋和2014-12初冬较为明显;无机磷在2014-04也体现出与丰度的相关性;温度、盐度与丰度相关性主要体现在2014-08夏季。
[Abstract]:Based on the field survey data in Qinzhou Bay in 2013-11, 2014-04, 2014-08 and 2014-12, the characteristics of phytoplankton community structure and their adaptation to the environment were studied. PRIMER6 was used to carry out multivariate statistical analysis. The results are as follows: during the investigation, 187 species of phytoplankton (including forms and varieties) were identified in Qinzhou Bay, among which 126 species were diatoms, accounting for 67.38 species of phytoplankton. There are 54 species of Prorophyta, 2 species of Chlorella, 1 species of Xanthophyta, 1 species of Cyanophyta, 1 species of Phaeophyta and 1 species of Cryptophyta. Among them, there are 134 species of phytoplankton of 6 phyla, 54 genera, and 148 species of phytoplankton of 8 phyla, 71 genera. The dominant species showed obvious succession between seasons, except for Phaeocystis globosa, the other species were diatoms, and most of them were wide temperature species. The abundance of phytoplankton was different in different seasons, and the distribution and seasonal variation of phytoplankton in water and net were not completely consistent. The net harvest abundance was the highest in 2014-08, the lowest in 2013-11, and the highest in water harvesting 2014-12 due to the large abundance of Phaeocystis. Except for 2014-12, the trend of diversity index and evenness index of phytoplankton community in the other three months were basically the same and higher, the species were abundant, and the community structure was stable. Effects on phytoplankton community structure and ecosystem stability in Qinzhou Bay. The content of DIN in nutrient is lower in spring and summer, and the plane distribution is lower in the south and higher in the north, the distribution trend of inorganic phosphorus is more regular, the high value area mainly distributes near the shore, and the high value area transfers to the offshore in 2014-04 spring. Using PRIMER 6, the phytoplankton community in Qinzhou Bay was analyzed by multivariate statistical analysis, CA cluster analysis and MDS multidimensional scale analysis in four months. The results showed that there were differences in phytoplankton community structure in four months. At the same time, the difference of phytoplankton community was tested by ANOSIM, and the significant level was 0.01, which indicated that the difference of phytoplankton community in different seasons was extremely significant. In paired tests, phytoplankton communities were also significantly different in different seasons and months. SIMPER analysis showed that the different species were some wide temperature and wide salt species or warm temperate coastal species, which were suitable for Qinzhou Bay environment. At the same time, the results of net mining and water extraction caused the difference between the main species is basically the same. In the PCA analysis of environmental factors in different months, the difference of environmental factor coefficients in different months indicates that the contribution rate and function of environmental factors are different in different time. The correlation coefficient between phytoplankton cell abundance and environmental factors was higher in most months, indicating that there was a good correlation between abundance and environmental factors. Nitrogen content was significantly correlated with phytoplankton growth in four months, especially in the autumn of 2013-11 and the early winter of 2014-12, and inorganic phosphorus also showed the correlation with abundance in 2014-04. The correlation between temperature, salinity and abundance is mainly reflected in 2014-08 summer.
【学位授予单位】:国家海洋局第一海洋研究所
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:Q948.8

【参考文献】

相关期刊论文 前10条

1 赖俊翔;覃仙玲;姜发军;许铭本;张荣灿;陆家昌;;钦州湾表层水分粒级Chl a分布特征及其影响因素[J];海洋环境科学;2016年05期

2 贺蓉;蒋礼;郑曙明;周艳玲;邹沈娟;丁山;;三峡库区龙滩河水域牧场浮游植物群落结构及水质评价[J];水生态学杂志;2016年04期

3 叶朝放;梁丽君;;防城港东西湾浮游植物的多样性分布和水质评价[J];大众科技;2014年08期

4 蓝文陆;李天深;郑新庆;施晓峰;黎明民;陆建军;李波;;枯水期钦州湾浮游植物群落结构组成与分布特征[J];海洋学报(中文版);2014年08期

5 林美芳;钟秋平;;广西钦州湾营养状况季节分析与评价研究[J];环境科学与管理;2014年06期

6 杨斌;鲁栋梁;钟秋平;张志清;李尚平;;钦州湾近岸海域水质状况及富营养化分析[J];中国环境监测;2014年03期

7 李然然;章光新;张蕾;;查干湖湿地浮游植物与环境因子关系的多元分析[J];生态学报;2014年10期

8 杨斌;钟秋平;鲁栋梁;林美芳;李尚平;;钦州湾秋季营养盐分布特征及营养状态分析研究[J];环境科学与管理;2013年12期

9 马媛;魏巍;高振会;王迪;杨阳;马玉;;钦州湾营养盐的分布特征及影响因素[J];海洋通报;2013年05期

10 王迪;陈丕茂;逯晶晶;马媛;;钦州湾浮游植物周年生态特征[J];应用生态学报;2013年06期

相关会议论文 前1条

1 徐敏;龙颖贤;韩保新;;基于ASSETS的钦州湾海域富营养化状况评价[A];中国海洋湖沼学会水环境分会中国环境科学学会海洋环境保护专业委员会2012年学术年会论文摘要集[C];2012年

相关博士学位论文 前1条

1 吴在兴;我国典型海域富营养化特征、评价方法及其应用[D];中国科学院研究生院(海洋研究所);2013年

相关硕士学位论文 前4条

1 闭文妮;第二代海水富营养化评价方法在广西近岸海域的应用[D];广西大学;2013年

2 沈会涛;白洋淀浮游植物的群落生态学研究[D];河北大学;2007年

3 王梅;球形棕囊藻定量方法及盐度、N、P、Fe对其生长的影响[D];暨南大学;2006年

4 于萍;温度、光照及种间相互作用对东海典型浮游植物生长的影响[D];中国海洋大学;2005年



本文编号:2322445

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2322445.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bc263***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com