基于Landsat8 OLI数据彰武地区旱情监测模型研究
[Abstract]:The research scope of this study is Zhangwu County, Fuxin City, Liaoning Province. The Landsat 8 satellite OLI remote sensing images in June and April 2016 are preprocessed by ENVI software. At the same time, the measured data of soil moisture content in corresponding months in the study area were obtained. In this study, the temperature vegetation index method and vertical drought index method were selected as indicators of drought monitoring. The indexes were fitted with soil moisture content, and the significance was analyzed by SPSS software. Finally, a drought monitoring model suitable for Zhangwu area is obtained. The main contents and conclusions of this study are as follows: 1. The model based on temperature vegetation index is constructed and analyzed. The correlation and significance between temperature vegetation index and soil moisture content were compared and analyzed. The results showed that the fitting effect of temperature vegetation drought index and soil moisture content at different depths was poor, and the fitting effect with 30cm soil moisture content was relatively good. The multiple correlation coefficient was 0.3837; The significance of the two was analyzed by using SPSS software. The results showed that the soil moisture content with the depth of 10cm and 20cm was significantly correlated with TVDI at the level of 0. 05. Soil moisture content with depth of 30cm was significantly correlated with TVDI at 0.01 level. The model based on vertical drought index is constructed and analyzed. In the construction of drought monitoring model based on vertical drought index method, the fitting results of PDI inversion data and soil moisture content show that the soil moisture content fitting effect of depth 20cm is the best. The fitting effect of soil moisture content with the depth of 30cm was relatively poor when the complex correlation coefficient was 0. 5555 ~ 10 cm and the depth of 30cm was 10 cm. The results of significant analysis showed that soil moisture content with 1Ocm and 20cm depth was significantly correlated with vertical drought index at 0.01 level, and soil moisture content with depth 30cm was significantly correlated with vertical drought index at 0. 05 level. The two models were compared and the optimal model was chosen as the drought monitoring model in Zhangwu area. The correlation and significance of the two models showed that the fitting results of vertical drought index and soil moisture content were better than that of soil moisture content and TVDI. Therefore, the model based on vertical vegetation index method is more suitable for drought monitoring in Zhangwu area. 4. The model is validated and analyzed. Through the inversion of satellite image in April 2016, the inversion value of soil moisture content is obtained. Through the comparison and analysis of soil moisture content measured at different depths and the inversion soil moisture content, the results show that, The correlation of soil moisture with depth of 1Ocm and 20cm was higher than that of 30cm with depth of 0.1041 and 0.1064, respectively. Among them, the correlation coefficient of soil moisture content with depth of 30cm is the worst, the correlation coefficient is 0.4945, the complex correlation coefficient between soil moisture content and measured soil moisture content is 0.5986 when the depth is 10cm, and the correlation coefficient is 0.4945 when the depth is 30cm. The complex correlation coefficient between the inversion of depth of 20cm and the measured soil moisture content is 0.6009. Through the analysis of accuracy and relative error, the inversion effect of 10cm ~ (20) cm is the most ideal. The average inversion accuracy of 10cm is 91.25 ~ (20) cm and the average of inversion accuracy is 88.53, which is 6.96% and 4.24% higher than the average value of 30cm inversion precision respectively. In the relative error analysis, the average relative error of 10 cm ~ (20) cm is lower than that of 30cm by 8.9% and 5.34 ~ (30) cm, respectively. The average relative error of 10 cm ~ (20) cm is 18.49. In conclusion, in drought monitoring, the effect of drought monitoring with depth less than 20cm is ideal when remote sensing and vertical drought index model are used to monitor drought.
【学位授予单位】:沈阳农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S423
【相似文献】
相关期刊论文 前10条
1 李全友;卢胜勇;;河北省旱情监测现状及发展建议[J];河北水利;2007年08期
2 牛二伟;;长治市旱情监测状况及改进对策[J];中国水利;2008年09期
3 许国鹏;李仁东;梁守真;叶明;;基于改进型温度植被干旱指数的旱情监测研究[J];世界科技研究与发展;2006年06期
4 康贵春;梁凤国;;辽宁省旱情监测系统建设研究[J];水利水电技术;2007年04期
5 高福栋;王兆刚;;北京市旱情监测系统 统一管理和分级管理相结合[J];中国水利;2007年13期
6 章树安;王爱平;杨桂莲;杨建青;;旱情监测与评价进展研究与思考[J];水文;2010年03期
7 朱建国,杨桂霞,王秀山,王东宁;旱情监测与业务化运行[J];中国农业资源与区划;1998年05期
8 高伟;林妍;潘新华;;基于多源遥感卫星数据的桂西北旱情监测研究[J];广西水利水电;2014年01期
9 陈晨;刘媛媛;王文种;何川;;基于温度植被干旱指数的三花间流域旱情监测[J];东北水利水电;2008年02期
10 ;怎样进行旱情监测与分析[J];吉林水利;1996年01期
相关会议论文 前10条
1 傅承琦;;旱情监测系统如何更好地服务泉州抗旱工作[A];福建省第十一届水利水电青年学术交流会论文集[C];2007年
2 康己新;;泉州市旱情监测系统试点工程调研报告[A];福建省第十二届水利水电青年学术交流会论文集[C];2008年
3 乌日娜;阿拉腾图雅;何贵平;;乌海市重点地区建设旱情监测与分析系统工程综述[A];科技创新与经济结构调整——第七届内蒙古自治区自然科学学术年会优秀论文集[C];2012年
4 于洋;;遥感技术在黑龙江省春季抗旱工作中的应用[A];全国旱情监测技术与抗旱减灾措施论文集[C];2009年
5 陈智;;旱情监测自动化技术[A];中国水利学会首届青年科技论坛论文集[C];2003年
6 王鹏新;孙威;张树誉;李星敏;;旱情监测及其业务化运行的关键技术[A];中国数字农业与农村信息化学术研究研讨会论文集[C];2005年
7 杨扬;张建云;陆桂华;吴炳方;周国良;戚建国;王琳;;全国旱情监测预测系统简介[A];中国水利学会2006学术年会暨2006年水文学术研讨会论文集(水文水资源新技术应用)[C];2006年
8 李荣f ;余雷;雷声;;江西省农业旱情监测预测系统模型研究[A];全国旱情监测技术与抗旱减灾措施论文集[C];2009年
9 牟伶俐;闫娜娜;吴炳方;;旱情遥感监测方法与系统开发[A];中国数字农业与农村信息化学术研究研讨会论文集[C];2005年
10 陆健强;王卫星;杨志勇;林钻辉;;基于茶园旱情监测的无线传感器网络节点系统[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年
相关重要报纸文章 前10条
1 记者 冯颖 通讯员 郑刚;做好旱情监测预测和人影工作[N];中国气象报;2013年
2 秦延安 程文利;陕西首批20个旱情监测点正式启动[N];黄河报;2009年
3 记者 秦延安 通讯员 程文利;陕西 第一批旱情监测点启用[N];中国水利报;2009年
4 记者 刘国英 通讯员 秦延安 程文利;陕西首批20个站点启动旱情监测[N];陕西日报;2009年
5 龙小波;我市建成旱情监测系统[N];商洛日报;2009年
6 记者 毛翠辉 通讯员 刘文奎;加强旱情监测预报工作[N];中国气象报;2011年
7 通讯员 林泽磊 李德平;青岛市加强旱情监测服务[N];中国气象报;2010年
8 李哲强;河北:安一双“旱情千里眼”[N];中国水利报;2002年
9 记者 冯金莲;旱情应急监测 实施方案启动[N];石家庄日报;2009年
10 记者 索颖;我市抗旱浇麦工作取得阶段性胜利[N];新乡日报;2009年
相关博士学位论文 前2条
1 陈晓燕;旱情监测预测系统建设关键技术研究[D];河海大学;2004年
2 牟伶俐;农业旱情遥感监测指标的适应性与不确定性分析[D];中国科学院研究生院(遥感应用研究所);2006年
相关硕士学位论文 前6条
1 胡文;内蒙古地区基于云参数背景场的MODIS旱情监测模型研究与应用[D];内蒙古农业大学;2016年
2 吴淑静;基于Landsat8 OLI数据彰武地区旱情监测模型研究[D];沈阳农业大学;2017年
3 包欣;基于多源数据的旱情监测方法研究[D];安徽理工大学;2013年
4 习永强;旱情监测信息管理系统研究[D];西北大学;2012年
5 孙丽;构建北京地区遥感旱情监测系统的研究[D];中国农业大学;2004年
6 闫娜娜;基于遥感指数的旱情监测方法研究[D];中国科学院研究生院(遥感应用研究所);2005年
,本文编号:2323163
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2323163.html