电—声相互作用对聚合物链中载流子瞬态输运性质的影响

发布时间:2018-11-11 19:31
【摘要】:与量子耗散密切相关的开放量子系统中的电输运问题一直是科研人员关注的焦点。在开放量子系统中,若中间传输层采用有机材料,电-声相互作用对于体系中载流子输运性质有着重要的影响。为了得到有机聚合物器件的实时输运性质,并且充分考虑有机材料中强的电-声耦合,本文采用基于格林函数的hierarchical equations of motion(HEOM)与非绝热分子动力学相结合的方法,详细讨论了共轭聚合物系统中元激发动力学以及载流子瞬态输运过程。对于中间体系电子部分哈密顿我们采用紧束缚的Su-Schrieffer-Heeger(SSH)模型来描述,源电极和漏电极则采用无相互作用的费米子库来描述。通过基于格林函数的HEOM方法可以得到描述体系电子部分的密度矩阵和一阶伴随密度矩阵的微分方程组;对晶格部分采用的是经典处理,其满足牛顿运动方程。利用Runge-Kutta方法对整个系统演化进行数值模拟。我们首先运用HEOM方法研究了开放量子系统中不同强度电-声耦合下体系载流子的输运性质。计算结果表明:偏压较小时,电-声相互作用阻碍体系中载流子输运,但随着偏压的增加,电-声耦合反而促进载流子输运。这是由于偏压的增加使得电极中的载流子能够注入到体系中,电-声耦合作用下,诱导晶格发生畸变,导致激子态的形成,激子态的出现促进了载流子输运。并且电-声相互作用越大,晶格弛豫能力越强,能级越向带隙中心偏移,使得偏压窗内部的态越多,电流越大。另外我们还研究了中间体系尺寸效应的影响,发现,随着中间体系长度的增加,能级分布变密,在相同的偏压下,相对于小尺寸体系更容易形成新的激子态,新激子态的出现会促进电流的再次增加。另外,当体系与电极的耦合减弱时,电-声相互作用越强,VI-曲线中出现的电流平台越明显。这是因为体系与电极耦合减小时,会使得体系中能级展宽越小,并且电-声耦合越大,晶格弛豫能力越强,所以出现的阶梯状平台越明显。我们还模拟了Sweep偏压下,系统的动力学输运行为。计算发现:当偏压以递增的形式加入,增加到最大值后再递减,体系伏-安特性曲线中,电流会出现回滞现象。这是由于有机聚合物中存在较强的电-声相互作用,运动的电子和空穴会诱导晶格发生畸变,畸变的晶格会产生一个局域的势场,电子和空穴会束缚到这个势场中形成激子态。由于这种“自陷”效应的存在,当偏压逐渐递增时,体系会形成激子态;当偏压增加到最大值再逐渐递减时,体系的激子态会湮灭。并且激子态形成的偏压值和激子态湮灭的偏压值不同,进而导致电流会出现回滞效应。我们进一步研究发现:当中间体系尺寸增加时,在一定的偏压范围内,电流的回滞效应会多次出现。增强电-声耦合强度,使得体系带隙变大,会导致电流回滞效应越明显;增强体系与电极的耦合,使得体系能级展宽变大,电流回滞效应越微弱。
[Abstract]:The problem of electrical transport in open quantum systems, which is closely related to quantum dissipation, has always been the focus of attention of researchers. In an open quantum system, if organic materials are used in the intermediate transport layer, the electro-acoustic interaction plays an important role in the carrier transport properties in the system. In order to obtain the real time transport properties of organic polymer devices and to fully consider the strong electro acoustic coupling in organic materials, the method of combining hierarchical equations of motion (HEOM) based on Green's function with non adiabatic molecular dynamics is used in this paper. The excitation kinetics and carrier transient transport in conjugated polymer systems are discussed in detail. For the electronic part of the intermediate system Hamiltonian is described by a tight-binding Su-Schrieffer-Heeger (SSH) model and the source electrode and leakage electrode are described by a fermionic library without interaction. By using the HEOM method based on Green's function, the differential equations describing the electronic part and the first order adjoint density matrix of the system can be obtained, and the lattice part is treated by classical method, which satisfies the Newtonian equation of motion. The Runge-Kutta method is used to simulate the whole system evolution. We first use HEOM method to study the transport properties of carriers in open quantum systems with different intensities of electro-acoustic coupling. The results show that the electro acoustic interaction hinders the carrier transport when the bias voltage is small, but with the increase of the bias voltage, the electro acoustic coupling accelerates the carrier transport. This is due to the increase of the bias voltage, the carriers in the electrode can be injected into the system, and the lattice distortion is induced by the electro-acoustic coupling, which leads to the formation of the exciton state, and the emergence of the exciton state promotes the carrier transport. The larger the electric-acoustic interaction is, the stronger the lattice relaxation ability is, and the more the energy level shifts to the center of the band gap, the more the states in the bias window are and the larger the current is. In addition, we also study the effect of the size effect of the intermediate system. It is found that with the increase of the length of the intermediate system, the energy level distribution becomes denser, and at the same bias voltage, it is easier to form a new exciton state than the small size system. The appearance of the new exciton state will promote the increase of the current again. In addition, when the coupling between the system and the electrode is weakened, the stronger the electro-acoustic interaction is, the more obvious the current platform appears in the VI- curve. This is because when the coupling between the system and the electrode decreases, the energy level in the system becomes smaller, and the larger the electro-acoustic coupling is, the stronger the lattice relaxation ability is, and the more obvious the ladder platform is. We also simulate the dynamic transport behavior of the system under Sweep bias. It is found that when the bias voltage is added in the form of increasing voltage and then decreasing when the bias voltage is increased to the maximum value, the hysteresis of the current will occur in the volt-ampere characteristic curve of the system. This is due to the existence of strong electro-acoustic interaction in organic polymers, in which moving electrons and holes will induce lattice distortion, and distorted lattices will produce a localized potential field in which electrons and holes will be bound to form exciton states. Due to the existence of this "self-trapping" effect, the exciton state of the system will be formed when the bias voltage increases gradually, and the exciton state of the system will annihilate when the bias voltage increases to the maximum value and then decreases gradually. Moreover, the polarization voltage of exciton state is different from that of exciton state annihilation, which leads to hysteresis effect of current. It is found that the hysteresis effect of the current will occur many times in a certain range of bias voltage when the size of the intermediate system increases. The stronger the electro-acoustic coupling intensity, the larger the band gap, the more obvious the hysteresis effect is, and the stronger the coupling between the system and the electrode is, the wider the energy level is, and the weaker the current hysteresis effect is.
【学位授予单位】:河北师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O469

【相似文献】

相关期刊论文 前10条

1 丛爽,郑毅松,姬北辰,戴谊;量子系统控制发展综述[J];量子电子学报;2003年01期

2 李宗诚;;边界交流关系、量子系统消耗与量子组织均衡——量子开放系统边界交流均衡分析力学基础(Ⅱ)[J];原子与分子物理学报;2008年04期

3 丛爽;朱亚萍;刘建秀;;不同目标函数的量子系统动态跟踪[J];系统科学与数学;2012年06期

4 刘延生,,汪佩琼;量子系统绝热演化的非动力学相位[J];武汉水利电力大学学报;1995年05期

5 常功;;量子系统中非指数形式衰变的首次发现[J];科学;1998年01期

6 黄泽霞;黄德才;俞攸红;;开放量子系统状态最优跟踪控制的研究[J];计算机科学;2013年12期

7 丛爽;匡森;;量子系统中状态估计方法的综述[J];控制与决策;2008年02期

8 梅迪;李崇;杨国辉;宋鹤山;;高维量子系统中编码和解码方案(英文)[J];大连理工大学学报;2009年02期

9 杨洁;丛爽;;单个控制场下开放量子系统的状态转移(英文)[J];中国科学院研究生院学报;2012年01期

10 王银珠;侯晋川;;无限维两体量子系统可分态的一个必要充分条件[J];中北大学学报(自然科学版);2012年01期

相关会议论文 前10条

1 杨名;郑小虎;杨青;董萍;方曙东;王长春;曹卓良;;高维量子系统纠缠浓缩[A];第十五届全国原子与分子物理学术会议论文摘要集[C];2009年

2 刘晓艳;刘学深;周忠源;丁培柱;;量子系统显式辛格式的优化[A];Structure Preserving Algorithm and Its Applications--Proceedings of CCAST (World Laboratory) Workshop[C];1999年

3 丛爽;;量子系统控制做什么?[A];系统仿真技术及其应用学术论文集(第15卷)[C];2014年

4 产林平;丛爽;;开放量子系统量子态相干保持的控制策略[A];'2010系统仿真技术及其应用学术会议论文集[C];2010年

5 丛爽;杨霏;;开放量子系统收敛的状态控制策略[A];中国自动化学会控制理论专业委员会B卷[C];2011年

6 丛爽;;量子系统的相干控制策略及其实现[A];'2010系统仿真技术及其应用学术会议论文集[C];2010年

7 丛爽;郑捷;;两能级量子系统控制场的设计与操纵[A];'2006系统仿真技术及其应用学术交流会论文集[C];2006年

8 周薇薇;张明;谢红卫;;量子系统的多时间点测量[A];'2006系统仿真技术及其应用学术交流会论文集[C];2006年

9 刘学深;丁培柱;;量子系统的辛算法及其在激光原子物理中的应用[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年

10 李兆凯;Man-HongYung;陈宏伟;鲁大为;James D.Whitfield;彭新华;Ala'n Aspuru-Guzik;杜江峰;;利用核磁共振量子计算解决量子系统基态问题[A];第十七届全国波谱学学术会议论文摘要集[C];2012年

相关重要报纸文章 前1条

1 记者 吴长锋;捉住“量子小妖”实现量子算法冷却[N];科技日报;2014年

相关博士学位论文 前10条

1 崔晓东;GARRISON-WRIGHT相位族的理论与应用研究[D];山东大学;2015年

2 周薇薇;基于几何表示的典型量子系统辨识与控制[D];国防科学技术大学;2013年

3 陈冲;周期性驱动开放量子系统的动力学研究[D];兰州大学;2016年

4 程l

本文编号:2325899


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2325899.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5cd4b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com