基于晶格Boltzmann方法研究接触角的测量和迟滞
[Abstract]:In the computational fluid dynamics, the lattice Boltzmann method, which is derived from the lattice gas and the molecular dynamic theory, has been developed into a reliable new way, and its efficiency, accuracy and robustness are also widely confirmed. It is no longer dependent on the Navier-Stokes equations of the macro continuum, and the macroscopic behavior of complex fluid is simulated from the micro-model, and the successful application in the complex fluid movement such as particle flow, thermal flow, micro-fluid and the like is studied. In particular, in the multi-phase flow research, since the lattice Boltzmann method does not need the boundary integration, the difficulties encountered by the traditional CFD method in tracking a large number of dispersed phase interfaces are avoided. Based on the principle of thermodynamics, the research group put forward a multi-phase flow model with thermodynamic consistency and Galileo invariance, which laid the foundation for the study of surface wetting. Surface wetting is a common natural phenomenon; as a feature of surface wettability, the contact angle is the result of three-phase interaction of gas, liquid and solid surface, and also is a common physical quantity in research and application. Although the lattice Boltzmann method has made great success in the simulation of the surface wetting, there is no reliable algorithm to calculate the dynamic contact angle; even the static contact angle can only be measured using an ideal spherical cap model or using an external tool. First, the chemical potential boundary condition is used to drop the liquid drop directly on the substrate, no transition zone is needed, and the contact angle can be measured directly from the three contact points. The method of calculating the dynamic contact angle in real time is presented by analyzing the micro-shape of the contact angle, using the intersection point of the gas-liquid interface and the second-row lattice line to determine the tangent. The contact angle calculated by the method and the theoretical calculation result are compared with the system under the condition of ignoring the gravity. When the temperature is 0. 7 and 0. 8, the results of the method are very good in the range of 30 to 160 degrees, and the calculation result of the method is accurate. On the same solid interface, the droplet radius is from 20 to 200 grids, and the calculated contact angle remains unchanged, indicating that the calculation result of the method is stable. In the case of gravity, the droplets and the suspended droplets in a different plane from 0. 1 cm to 0. 5 cm were calculated. The results show that, with the change of the size, the deformation of the liquid drops is more and more large, but the contact angle of the liquid drop calculated by the current method remains unchanged. This is consistent with the theoretical expectation, and the micro essence of the contact angle is also truly reflected. the liquid drops are further placed on the solid surface which is arranged alternately in the water-friendly water, and when the surface inclination is not too large, the liquid drops can be inclined under the action of gravity, so that the contact angle hysteresis phenomenon is generated. The contact angle hysteresis is calculated using the surface of three different lipophilic water configurations, and the results show that, although the hydrophobic mode surface has a greater contact angle than the hydrophilic surface, and the droplets are less prone to instability, the tendency of the contact angle hysteresis to increase with the inclination of the surface is substantially uniform. After the unstable sliding, the liquid drops can slide through the hydrophobic strip continuously, the advancing angle gradually increases and then suddenly decreases, the back angle gradually decreases and then suddenly increases, the variation of the two is generally not synchronized, resulting in a dynamic fluctuation state of the contact angle hysteresis. The dynamic waveform of the contact angle hysteresis is related to the phase of the forward and backward angles, and contains high-order fluctuations due to the shaking of the droplets. These studies on contact angle and hysteresis have contributed to an in-depth understanding and practical application of the wetting phenomenon. The lateral migration of the cross-flow layer in the pipe flow is a wonderful natural phenomenon, and has developed into a hot spot in the field of micro-flow control in recent years. By using the multi-relaxed lattice Boltzmann method, we have studied the phenomenon of the inertia of the elliptic particles. Similar to the classical Sere-Silberberg effect, elliptical particles also exhibit lateral migration and balance. but because of its non-circular geometry, the motion of the elliptical particles also includes non-uniform torsional and periodic vibrations. The influence of the Reynolds number, the blocking ratio and the aspect ratio on the trajectory of the elliptic motion is studied respectively. It is found that the influence of the change of the Reynolds number on the equilibrium position of the ellipse is very small, the change rate of the equilibrium position is only 3% when the Reynolds number changes from 3 to 300, and the larger the blocking ratio is, The closer the equilibrium position is to the center line of the pipe, the more the effect of the particle convection field is; with the increase of the aspect ratio, the rotation period of the elliptical particles becomes shorter, and the equilibrium position exhibits a saddle-shaped change, reaching the lowest point when the aspect ratio is close to 0.5. This work has a positive effect on the study of the blood flow of birds with ovoid or elliptical red blood cells.
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O35
【相似文献】
相关期刊论文 前10条
1 张霞;李凤滨;盛金昌;詹美礼;罗玉龙;;格子Boltzmann方法模拟土体渗流场研究[J];水电能源科学;2012年10期
2 梁功有;曾忠;姚丽萍;张良奇;邱周华;梅欢;;二维方腔内热表面张力流的格子Boltzmann方法模拟[J];重庆大学学报;2012年09期
3 阎广武,邵显,胡守信;用格子Boltzmann方法研究波及其粘性实验[J];吉林大学自然科学学报;1996年04期
4 任晟;张家忠;张亚;苗卫丁;;零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟[J];物理学报;2014年02期
5 吕晓阳,李华兵;用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流[J];物理学报;2001年03期
6 许鹤林;马建敏;;利用格子Boltzmann方法数值模拟Rayleigh-Benard对流[J];力学季刊;2010年02期
7 张立换;康秀英;吉驭嫔;;格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流[J];北京师范大学学报(自然科学版);2010年02期
8 龚帅;郭照立;;流向振荡圆柱绕流的格子Boltzmann方法模拟[J];力学学报;2011年01期
9 H·内玛蒂;M·法哈第;K·赛迪戈亥;M·M·皮柔兹;N·N·阿巴塔瑞;黄雅意;;前后排列旋转圆柱体对流热交换的格子Boltzmann方法解[J];应用数学和力学;2012年04期
10 何云,李华兵,陈若航,刘慕仁,孔令江;Couette流和空腔粘性流的格子Boltzmann方法模拟[J];计算物理;2000年Z1期
相关会议论文 前7条
1 梁功有;曾忠;张永祥;张良奇;姚丽萍;邱周华;;封闭方腔内自然对流的格子Boltzmann方法模拟[A];重庆力学学会2009年学术年会论文集[C];2009年
2 邓义求;唐政;董宇红;;基于格子Boltzmann方法对气动声学的应用研究[A];中国力学大会——2013论文摘要集[C];2013年
3 唐政;邓义求;董宇红;;基于格子Boltzmann方法对多孔介质壁湍流减阻减噪机理的研究[A];中国力学大会——2013论文摘要集[C];2013年
4 邓林;张云;解孝林;周华民;;共混高聚物剪切粘度的格子Boltzmann方法模拟[A];中国化学会第29届学术年会摘要集——第14分会:流变学[C];2014年
5 王星;谢华;;基于浸入边界-格子Boltzmann方法的仿生机器鱼的数值模拟[A];第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会论文集——C计算流体力学[C];2014年
6 戴传山;刘学章;;格子Boltzmann方法用于多孔介质与自由流体开口腔体内自然对流的数值模拟研究[A];中国地球物理学会第二十七届年会论文集[C];2011年
7 李学民;曹俊兴;王兴建;;利用格子Boltzmann方法模拟孔隙介质中的流体渗流[A];中国地球物理学会年刊2002——中国地球物理学会第十八届年会论文集[C];2002年
相关博士学位论文 前10条
1 杨鑫;基于格子Boltzmann方法的椭球粒子在简单流体中的运动研究[D];中国科学技术大学;2016年
2 龚帅;亲疏水性对池沸腾传热影响的格子Boltzmann方法研究[D];上海交通大学;2015年
3 任俊杰;基于格子Boltzmann方法的页岩气微观流动机理研究[D];西南石油大学;2015年
4 谭玲燕;用格子Boltzmann方法模拟圆柱的搅动流动及减阻[D];吉林大学;2011年
5 柴振华;基于格子Boltzmann方法的非线性渗流研究[D];华中科技大学;2009年
6 丁丽霞;用于模拟粘性流体流动的格子Boltzmann方法[D];吉林大学;2009年
7 张婷;多孔介质内多组分非均相反应流的格子Boltzmann方法研究[D];华中科技大学;2012年
8 鲁建华;基于格子Boltzmann方法的多孔介质内流动与传热的微观模拟[D];华中科技大学;2009年
9 张文欢;基于格子Boltzmann方法的撞击流流动不稳定性的数值研究[D];华中科技大学;2013年
10 宋香霞;用格子Boltzmann方法分析燃料电池阳极的三维结构和性能[D];中国科学技术大学;2013年
相关硕士学位论文 前10条
1 兰中周;一类非线性偏微分方程的格子Boltzmann方法[D];东华理工大学;2014年
2 李冬杰;基于格子Boltzmann方法的颅内动脉瘤直血管和弯曲血管三维数值研究[D];华中科技大学;2014年
3 年玉泽;基于Boltzmann方法的植被发育斜坡土体大孔隙渗流研究[D];昆明理工大学;2016年
4 姜继鼎;基于格子Boltzmann方法的活性粒子布朗运动的数值模拟研究[D];西安建筑科技大学;2016年
5 史文秋;基于格子Boltzmann方法的细微通道内脉冲加热下沸腾相变的研究[D];华北电力大学(北京);2016年
6 李蓉;基于晶格Boltzmann方法的三维旋转流体中二次流研究[D];广西师范大学;2016年
7 王特;求解含跳系数的单温辐射扩散方程的格子Boltzmann方法[D];湘潭大学;2016年
8 杨超;基于格子Boltzmann方法的微尺度气体流动模拟[D];东北大学;2013年
9 孙烁然;利用非均匀格子Boltzmann方法研究支架对颅内动脉瘤血流动力学的影响[D];华中科技大学;2015年
10 陈慧;基于晶格Boltzmann方法研究接触角的测量和迟滞[D];广西师范大学;2017年
,本文编号:2345840
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2345840.html