Kahler曲面中的β-辛临界曲面
发布时间:2018-11-25 18:36
【摘要】:给定嵌入到Kahler曲面M中闭二维辛曲面Σ,定义α为Σ在M中所成的Kahler角。本文主要讨论这种辛曲面类中的泛函Lβ =∫∑(1/cosβα)dμΣ,β≥0,以及使得该泛函取得极值的辛临界曲面。我们首先推导出它所对应的Euler-Lagrange方程,再通过一些分析计算得到β-辛临界曲面的一些性质。
[Abstract]:Given a closed 2-D symplectic surface 危 embedded in Kahler surface M, a is defined as the Kahler angle of 危 in M. In this paper, we mainly discuss the symplectic critical surface of the class of symplectic surface L 尾 = 鈭,
本文编号:2357055
[Abstract]:Given a closed 2-D symplectic surface 危 embedded in Kahler surface M, a is defined as the Kahler angle of 危 in M. In this paper, we mainly discuss the symplectic critical surface of the class of symplectic surface L 尾 = 鈭,
本文编号:2357055
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2357055.html