AF9 YEATS识别乙酰化组蛋白H3K9ac机制的分子动力学模拟研究
[Abstract]:In eukaryotes, nucleosomes are the basic structural units that form chromatin. The nucleosome consists of two molecules of histone H _ 2A, H _ 2B, H _ 3H _ 3 and H _ 3H _ 4, each of which forms a flat cylindrical octamer. The chromatin DNA of about every 146bp forms a nucleosome around the histone in a left-handed manner. Numerous nucleosomes make up chromatin. DNA and histone keep their structure stable by electrostatic force with positive charge of basic amino acid in histone molecule and negative charge of phosphate group in DNA double helix. Generally speaking, histone is very stable, but histone exposure to external N-terminal tail often occurs a large number of post-translational modifications (including acetylation and methylation of lysine and arginine, phosphorylation of serine and threonine, and phosphorylation of serine and threonine). Ubiquidization and ubiquitization of lysine. These posttranslational modifications play an important role in eukaryotic regulation of chromosome dynamics and accessibility of DNA. Histone acetylation is the most common and representative histone modification, and histone lysine acetylation is used as a marker for activation of transcription. At present, three protein domains have been found to specifically recognize and bind to acetylated histones: the Bromo domain (Bromodomain BRD), Tandem plant homologous domain (tandem plant homeodomain PHD) and newly discovered AF9 YEATS protein domain. AF9 protein is a very important transcriptional regulator. It can recruit histone H3K79 methyltransferase and superextension complex (Super Elongation Complex) to play an important role in the beginning and extension of transcription. YEATS domain can specifically recognize and bind to lysine acetylated histone (H3K9ac). And give play to the corresponding downstream function. Different from the Bromo domain (BRD) and the tandem plant homologous domain (PHD), the YEATS structure adopts a kind of immunoglobulin-like folding. Aromatic rings are used to form a sandwich-like binding pocket to recognize and accommodate acetyllysine. However, the specific details of YEATS domain specific recognition and binding to acetyllysine are unclear. In this paper, we used the molecular dynamics simulation of (molecular dynamics simulations,MD method and MM-PBSA (molecular mechanics/Poisson-Boltzmann surface area) method) to explore the interaction between AF9 YEATS and acetylated histone H3K9ac. In this thesis, we mainly focus on the following aspects: (1) to explore how AF9 YEATS protein specifically binds to acetylated histone H3K9ac, (2) to evaluate the effect of mutation on the binding ability of AF9 YEATS to H3K9ac by calculating binding free energy; (3) screening amino acid residues which play an important role in binding, (4) determining the function of important residues by comparing wild type and mutant system; (5) to help us understand the binding details between YEATS protein family and acetylated histone H3K9ac by studying AF9 and family protein Taf14; (6) hydrophobic interaction plays a decisive role in the binding of YEATS protein family to acetylated histone H3K9ac.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:Q51
【相似文献】
相关期刊论文 前10条
1 郑玉明;萨本豪;C.Ngo;L.De Paula;;热核稳定性的动力学模拟[J];中国原子能科学研究院年报;1990年00期
2 王丽,边秀房,李辉;金属Cu液固转变及晶体生长的分子动力学模拟[J];物理化学学报;2000年09期
3 滕智津,韩振为;分子动力学模拟在蛋白质固体表面吸附构象转变中的应用[J];化学工业与工程;2005年03期
4 郑博恺;罗施中;;粗粒化动力学模拟在膜蛋白研究中的应用[J];中国科技论文在线;2011年12期
5 潘龙强;耿存亮;慕宇光;刘鑫;胡毅;潘景山;周亚滨;龚斌;王禄山;;生物大分子的分子动力学模拟过程在百万亿次集群上的部署优化[J];山东大学学报(理学版);2012年07期
6 滕怡群;马力;任东俊;易希璋;;蛋白质合成与调控过程的动力学模拟[J];河南师范大学学报(自然科学版);1991年02期
7 熊大曦,李志信,过增元;氩气热力学参数和输运系数的分子动力学模拟[J];清华大学学报(自然科学版);1997年11期
8 吴超;马路遥;黄牛;;高性能分子动力学模拟在生物大分子结构和功能研究中的应用[J];科研信息化技术与应用;2010年04期
9 赵立岭,王吉华,窦相华,苏希玉;小蛋白天然结构与折叠速度关系的分子动力学模拟研究[J];山东大学学报(理学版);2005年04期
10 王慧娟;陈成;邓联文;江建军;;硅晶体中点缺陷结合过程的分子动力学模拟[J];材料科学与工程学报;2007年02期
相关会议论文 前10条
1 黄庆生;吴洪明;吴建华;;用纳米孔道测定蛋白质序列的分子动力学模拟[A];第八届全国生物力学学术会议论文集[C];2006年
2 岳红伟;王艳;陈光巨;;不同的识别剂、剪切剂对接到DNA上的动力学模拟比较[A];中国化学会第27届学术年会第14分会场摘要集[C];2010年
3 言天英;高学平;Gregory A.Voth;;分子动力学模拟离子液体的结构与动力学性质[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
4 黄世萍;;分子筛中烷烃的甲基旋转动力学:分子动力学模拟研究[A];中国化学会第26届学术年会理论化学方法和应用分会场论文集[C];2008年
5 田国才;华一新;;分子动力学模拟研究离子液体中水分子的光谱和动力学[A];中国化学会第26届学术年会理论化学方法和应用分会场论文集[C];2008年
6 王后芳;雷鸣;;小分子抑制剂与甲状腺结合前清蛋白对接,分子动力学模拟及结合自由能计算研究[A];中国化学会第26届学术年会化学信息学与化学计量学分会场论文集[C];2008年
7 张辉;李全伟;李英;李志强;;泡沫液膜的分子动力学模拟及泡沫析液机制的研究[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
8 徐爱进;周哲玮;胡国辉;;固体平板上超薄水膜润湿过程的分子动力学模拟[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
9 张继伟;卞富永;施国军;徐四川;;多巴胺在细胞膜中扩散和透过分子动力学模拟研究[A];第八届全国化学生物学学术会议论文摘要集[C];2013年
10 赵克杰;陈常青;;铜单晶中纳米孔洞生长尺度效应的分子动力学模拟[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
相关重要报纸文章 前2条
1 ;曙光超级计算机缩短病毒研究时间[N];中国电子报;2006年
2 记者 耿挺;铝如何对人体造成伤害[N];上海科技报;2014年
相关博士学位论文 前10条
1 张云安;微尺度下单晶硅疲劳失效机理的分子动力学模拟研究[D];国防科学技术大学;2014年
2 于华;蛋白质—肽相互作用的分子动力学模拟研究[D];浙江大学;2015年
3 张仕通;层状复合金属氢氧化物理论模拟分子力场的建立及其结构拓扑转变研究[D];北京化工大学;2015年
4 冯婷婷;几种重要疾病蛋白和抑制剂相互作用机理的分子动力学模拟研究[D];中国科学技术大学;2015年
5 郑耀庭;金属表面初期氧化行为的原位拉曼实验及分子动力学模拟[D];华东理工大学;2015年
6 刘金峰;发展和应用分块的量子化学方法进行生物大分子性质计算和动力学模拟[D];华东师范大学;2016年
7 马义丁;拥挤环境下的高分子扩散动力学[D];中国科学技术大学;2016年
8 杨光;微纳电化学葡萄糖生物传感器的分子动力学模拟研究[D];浙江大学;2017年
9 张艳军;埃博拉病毒VP35与抑制剂、碳纳米管和dsRNA作用模式及机理的分子动力学模拟研究[D];中国科学技术大学;2017年
10 邹丽云;光甘草定与转甲状腺素蛋白野生型及V30A突变体相互作用的多种分子动力学模拟研究[D];吉林大学;2017年
相关硕士学位论文 前10条
1 代春月;白细胞介素IL-8及受体CXCR1的分子动力学模拟[D];华南理工大学;2015年
2 王正;RO/R_2O-Al_2O_3-SiO_2熔体粘度特性的分子动力学模拟[D];山东建筑大学;2015年
3 钟建峰;抑杂剂与离子型稀土矿中铝杂质相互作用的分子动力学模拟分析[D];江西理工大学;2015年
4 相敏;金属熔体特征温度的分子动力学模拟[D];西安工业大学;2015年
5 胡立梅;蛋白质在材料表面吸附的分子动力学模拟[D];山东大学;2015年
6 赵智博;两种与癌症相关的酶的结构与活性的分子模拟研究[D];哈尔滨工业大学;2015年
7 黎迪晖;水碱浸泡条件下环氧树脂的性能演化与分子动力学模拟[D];哈尔滨工业大学;2015年
8 郭子凤;碲基材料热导率的分子动力学模拟[D];广西大学;2015年
9 李晶晶;服饰皮革材料热稳定性的分子动力学模拟研究[D];武汉纺织大学;2015年
10 侯银菊;铝熔化各向异性的分子动力学模拟[D];山西大学;2014年
,本文编号:2390243
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2390243.html