关于亏完全数和殆完全数的研究
发布时间:2021-06-03 19:54
设n为正整数,令σ(n)表示n的因子和函数.若σ(n)>2n,我们称n为盈数.若σ(n)<2n,我们称n为亏数.盈数与亏数的研究在数论史中有着悠久的历史.设d为n的一个真因子,若σ(n)=2n+d,则称n为盈度为d的盈完全数.特别地,d=1时,我们称n为准完全数;若σ(n)=2n-d,则称n为亏度为d的亏完全数.特别地,d=1时,则称n为殆完全数.近些年来,这些特殊结构的盈数与亏数备受数论学家们的关注.关于盈完全数,人们已经确定了具有两个不同素因子的盈完全数的结构,明确没有三个不同素因子的奇盈完全数,并给出了一定范围内盈完全数个数的上界.关于亏完全数,目前只知道素因子个数不超过2的所有亏完全数的结构.本文主要工作分为两部分.第一部分,我们研究了具有三个不同素因子的奇亏完全数,并证明了不存在这样的奇整数.第二部分,我们研究了偶殆完全数的若干性质,并得到了如下结论:(1)设为偶数n的标准分解式,其中qi为奇素数,q1<…<qt且α,βi≥1,i=1,…,t.若σ(n)=2n-1,则g1>2α+1且(2)设n=2αq1β1q2β2,其中q1<q2且α,βi...
【文章来源】:安徽师范大学安徽省
【文章页数】:38 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 引言
1.1 相关背景知识
1.2 本文的主要工作
第2章 不存在具有三个不同素因子的奇亏完全数
2.1 主要引理
2.2 定理及证明
第3章 偶殆完全数的若干性质
3.1 主要引理
3.2 偶殆完全数的若干性质
参考文献
致谢
附件:研究生期间已发表论文目录
本文编号:3211150
【文章来源】:安徽师范大学安徽省
【文章页数】:38 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 引言
1.1 相关背景知识
1.2 本文的主要工作
第2章 不存在具有三个不同素因子的奇亏完全数
2.1 主要引理
2.2 定理及证明
第3章 偶殆完全数的若干性质
3.1 主要引理
3.2 偶殆完全数的若干性质
参考文献
致谢
附件:研究生期间已发表论文目录
本文编号:3211150
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/3211150.html