PGC-1α在铅致睾丸支持细胞氧化应激与能量代谢中的作用
本文关键词:PGC-1α在铅致睾丸支持细胞氧化应激与能量代谢中的作用 出处:《武汉大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 醋酸铅 PGC-1α 氧化应激 能量代谢 睾丸支持细胞
【摘要】:目的生殖系统对铅毒性特别敏感,近年来,重金属铅的生殖毒性损伤备受关注,但是铅对生殖系统产生的毒性作用机制尚不明确,本文通过醋酸铅处理TM4细胞株和过表达PGC-1α的TM4细胞株(简称PGC-1α(+)TM4细胞株)及低表达PGC-1α的TM4细胞株(简称PGC-1α(-)TM4细胞株),来研究PGC-1α在铅导致睾丸支持细胞的氧化应激与能量代谢中的作用。方法醋酸铅处理PGC-1α(-)TM4、TM4和PGC-1α(+)TM4细胞株24小时后,用RT-PCR测细胞内PGC-1α、SIRT3 mRNA表达量;采用DHE荧光探针染色,分别用流式细胞仪、荧光酶标仪、荧光显微镜检测细胞内ROS含量;分别用ATP含量测定试剂盒及LD含量测定试剂盒检测细胞内ATP及LD含量;分别用LDH活性测定试剂盒、SDH活性测定试剂盒、Na+-K+-ATP酶活性测定试剂盒及Ca2+-Mg2+-ATP酶活性测定试剂盒检测细胞内 LDH、SDH、Na+-K+-ATP 酶及 Ca2+-Mg2+-ATP 酶活性。结果①RT-PCR结果显示,随着染毒浓度的增加,TM4细胞和PGC-1α(+)TM4细胞中PGC-1α及SIRT3 mRNA水平呈先升高后降低的趋势,而PGC-1α(-)TM4细胞中PGC-1α及SIRT3mRNA水平呈逐渐降低的趋势,且与对照组有统计学差异,P0.05。相同浓度醋酸铅处理后,TM4细胞内PGC-1α及SIRT3 mRNA表达明显低于PGC-1α(+)TM4细胞,而高于PGC-1α(-)TM4细胞。②流式细胞仪结果显示,随着醋酸铅浓度的升高,TM4、PGC-1α(-)TM4和PGC-1α(+)TM4细胞内ROS水平均呈逐渐升高的趋势,显示了醋酸铅暴露与ROS水平升高的剂量效应关系,并且PGC-1α(+)TM4TM4PGC-1α(-)TM4(P0.05)。荧光酶标仪检测ROS水平可以看到上述相同的趋势,细胞的ROS均随着醋酸铅浓度的升高而升高(P0.05),但相同浓度的醋酸铅处理后,PGC-1α(+)TM4细胞的ROS水平比TM4细胞降低了 33.7%~45.2%,而TM4细胞内ROS水平比PGC-1α(-)TM4细胞降低了65%~85%。荧光显微镜结果显示,随着醋酸铅浓度的升高,与各自对照组相比,三组细胞内的荧光强度逐渐增强,说明细胞内的ROS水平升高,并且,相同浓度组中,TM4细胞内的荧光强度低于PGC-1α(-)TM4细胞,而高于PGC-1α(+)TM4细胞。③ATP含量测定结果显示,与对照组相比,各浓度PGC-1α(-)TM4、TM4及PGC-1α(+)TM4细胞、内ATP的含量均下降,差异有统计学意义(P0.05);且随着乙酸铅染毒浓度升高,TM4及其过表达、低表达细胞内ATP的含量均呈下降趋势。当乙酸铅染毒浓度相同时,3种细胞内ATP的含量依次为PGC-1α(+)TM4TM4PGC-1α(-)TM4,差异均有统计学意义(P0.05)。④LD含量测定结果显示,随着醋酸铅浓度升高,PGC-1α(-)TM4、TM4和PGC-1α(+)TM4细胞的胞内LD水平逐渐降低,与对照组相比,20μM~80μM醋酸铅暴露使PGC-1α(-)TM4细胞内的LD水平降低约40%~70%(P0.05),TM4细胞内的LD水平降低约45%~75%(P0.05),PGC-1α(+)TM4细胞的胞内LD水平降低约30%~45%(P0.05)。相同浓度的醋酸铅处理后,三种细胞的LD水平差异明显,醋酸铅0 μM~160μM 组,TM4 细胞的 LD 水平比 PGC-1α(-)TM4 细胞高15%~34%,PGC-1α(+)TM4 细胞的LD水平比TM4细胞高约20%~50%。当醋酸铅浓度由0μM增加到160μM时,PGC-1α(+)TM4、TM4 及 PGC-1α(-)TM4 细胞内的 LD 含量分别由 127.60、100、71.22 nmol/mg pro 降低到 63.00、30.88、16.41 nmol/mg pro。⑤酶活性检测结果显示,醋酸铅暴露会使细胞内的LDH、SDH、Na+-K+-ATP酶、及Ca2+-Mg2+-ATP酶活性降低。并且,当醋酸铅浓度升高到160μM时,PGC-1α(-)TM4、TM4和PGC-1α(+)TM4细胞的胞内LDH活性分别由89.9%、100%、117.7%降低到37.7%、41.9%、62.7%。PGC-1α(-)TM4、TM4 和 PGC-1α(+)TM4 细胞的胞内 SDH 活性分别降低了6倍、5倍、5倍。相同浓度醋酸铅处理细胞时,PGC-1α(+)TM4细胞的SDH活性比TM4细胞约增加54.7%~161.8%,而TM4细胞SDH活性比PGC-1α(-)TM4增加84.4%~50.3%。醋酸铅暴露后,三种细胞内的Na+-K+-ATP酶及Ca2+-Mg2+-ATP酶活性均降低,并且,用相同浓度醋酸铅处理时,TM4细胞的Na+-K+-ATP酶及Ca2+-Mg2+-ATP酶活性高于PGC-1α(-)TM4细胞,而低于PGC-1α(+)TM4细胞(P0.05)。结论醋酸铅暴露可导致小鼠睾丸支持细胞内氧化损伤和能量代谢障碍。PGC-1α对铅诱导的小鼠睾丸支持氧化应激和细胞能量代谢障碍具有一定的保护作用。
[Abstract]:The purpose of the reproductive system is especially sensitive to the toxicity of lead in recent years, the reproductive toxicity of heavy metal injury concern, but the toxicity mechanism of lead on the reproductive system is not clear, the lead acetate treated TM4 cells and expression of PGC-1 in TM4 cell line (PGC-1 alpha (+) TM4 cell line) TM4 cell lines and low expression of PGC-1 alpha (PGC-1 alpha (-) TM4 cell line), to study the PGC-1 alpha lead to oxidative stress and energy metabolism of Sertoli cells in the role of lead. Method of lead acetate PGC-1 alpha (-) TM4, TM4 and PGC-1 alpha (+) TM4 cells after 24 hours, the expression of PGC-1 alpha and SIRT3 mRNA measured the amount of intracellular RT-PCR; stained by DHE fluorescent probe, respectively by flow cytometry and fluorescence microplate and fluorescence microscopy in detection of cell ROS content; each assay kit to detect ATP and LD content by ATP assay kit and LD content; respectively by LDH activity assay kit, SDH activity assay kit, Na+-K+-ATP enzyme activity assay kit and Ca2+-Mg2+-ATP enzyme activity assay kit for detection of intracellular LDH, SDH, Na+-K+-ATP enzyme and Ca2+-Mg2+-ATP enzyme activity. Results RT-PCR results showed that with the increase in concentration of TM4 cells, and PGC-1 alpha (+) increased first and then decreased with PGC-1 alpha and SIRT3 mRNA level in TM4 cells, and PGC-1 alpha (-) decreased gradually with PGC-1 alpha and SIRT3mRNA levels in TM4 cells, and there is significant difference with the control group P0.05. After the same concentration of lead acetate, the expression of PGC-1 alpha and SIRT3 mRNA in TM4 cells was significantly lower than that of PGC-1 alpha (+) TM4 cells, but higher than that of PGC-1 alpha (-) TM4 cells. The flow cytometry results showed that, with increasing concentration of lead acetate, TM4, alpha PGC-1 (-) TM4 and PGC-1 (+) ROS alpha level in TM4 cells was increased, showed lead acetate dose effect relationship with elevated ROS levels of exposure, and the PGC-1 (+) TM4TM4PGC-1 (alpha alpha - TM4 (P0.05)). Fluorescence microplate reader to detect the level of ROS can see the same trend, ROS cells were increased with increasing concentration of lead acetate and (P0.05), but the same concentration of lead acetate after treatment with PGC-1 alpha (+) TM4 cell ROS level decreased by 33.7% ~ 45.2% than TM4 cells, while the level of ROS TM4 cells in alpha than PGC-1 (-) TM4 cells decreased from 65% to 85%. Fluorescence microscopy results showed that with increasing concentration of lead acetate, compared with the control group, the fluorescence intensity of the three groups of cells were gradually increased, indicating the intracellular ROS level increased, and the same concentration, the fluorescence intensity of TM4 cells was lower than that of the PGC-1 alpha (-) TM4 cells, but higher than that of PGC-1 (alpha +) TM4 cells. The results showed that the content of ATP compared with the control group, the concentration of PGC-1 (-) TM4, alpha TM4 alpha and PGC-1 (+) TM4 cells, ATP content was decreased, the difference was statistically significant (P0.05); and with lead acetate concentration, TM4 content and low ATP expression in cells were decreased expression. When the concentration of lead acetate was the same, the content of ATP in the 3 cells was PGC-1 alpha (+) TM4TM4PGC-1 alpha (-) TM4 in turn, and the difference was statistically significant (P0.05). The results showed that the content of LD increased with the concentration of lead acetate, alpha PGC-1 (-) TM4, TM4 and PGC-1 (+) LD alpha level of TM4 cells decreased, compared with the control group, 20 M ~ 80 M lead acetate exposure to alpha PGC-1 (-) TM4 intracellular LD level reduced about 40% ~ 70% TM4 (P0.05), intracellular LD level decreased about 45% ~ 75% (P0.05), alpha PGC-1 (+) TM4 cell intracellular LD level decreased about 30% ~ 45% (P0.05). After treatment with the same concentration of lead acetate, the LD level of three kinds of cells was significantly different. The level of LD in TM4 cells was 15% to 34% higher than that in PGC-1 (TM4) cells, and the LD level of PGC-1 (+) TM4 cells was about 20% to 50% higher than that of TM4 cells in the lead acetate group of 0 M to 160 M. When the concentration of lead acetate increased from 0 M to 160 M, the LD content in PGC-1 alpha (+) TM4, TM4 and PGC-1 alpha (-) TM4 cells decreased from 127.60, 100, 71.22 nmol/mg pro to 63, 30.88, 16.41 nmol/mg nmol/mg, respectively. The results of enzyme activity test showed that lead acetate exposure could reduce the activity of LDH, SDH, Na+-K+-ATP enzyme and Ca2+-Mg2+-ATP enzyme in the cells. Moreover, when the concentration of lead acetate increased to 160 mu M, the intracellular LDH activity of PGC-1 alpha (-) TM4, TM4 and PGC-1 alpha (+) TM4 cells decreased from 89.9%, 100% and 117.7% to 37.7%, 41.9% and 62.7%, respectively. The intracellular SDH activity of PGC-1 alpha (-) TM4, TM4 and PGC-1 alpha (+) TM4 cells decreased by 6 times, 5 times and 5 times respectively. The SDH activity of PGC-1 + (TM4) cells increased by 54.7% ~ 161.8% compared with TM4 cells at the same concentration of lead acetate, while SDH activity of TM4 cells increased by 84.4% ~ 50.3% compared with PGC-1 (-) TM4. After exposure to lead acetate, the activities of Na+-K+-ATP enzymes and Ca2+-Mg2+-ATP enzymes in three kinds of cells decreased, and the activities of Na+-K+-ATP and Ca2+-Mg2+-ATP enzymes in TM4 cells were higher than those in PGC-1 alpha (-) TM4 cells, but lower than those in PGC-1 (+) TM4 cells (P0.05). Conclusion lead acetate exposure can lead to internal oxidative damage and energy metabolism in mouse testis support cells. PGC-1 - alpha has protective effect on lead induced mouse testis to support oxidative stress and cell energy metabolism disorder.
【学位授予单位】:武汉大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R114
【相似文献】
相关期刊论文 前10条
1 路博玉;李伦;代洪儒;朱尚娴;宋文祥;栾俊胜;许弘范;康范龙;王佐峰;;124例急性醋酸铅中毒的临床分析[J];吉林医学;1984年01期
2 薛莲,周建华,时锡金;醋酸铅体外诱发人外周血淋巴细胞HPRT基因位点突变的研究[J];工业卫生与职业病;2004年02期
3 贾庆华;蒋军军;哈小琴;;醋酸铅对体外培养人肾小管上皮细胞的毒性效应[J];山东大学学报(医学版);2010年06期
4 陈鹏;杨昆;;醋酸铅对未成年雄性大鼠骨髓间充质干细胞生长的影响[J];毒理学杂志;2010年05期
5 贾庆华;哈小琴;杨志华;吕同德;;醋酸铅对体外培养人肾小球系膜细胞超微结构的影响[J];工业卫生与职业病;2012年01期
6 _5定芳;;醋酸铅浊度试验对肝脏功能测定的实验观察[J];山西医学杂志;1963年03期
7 ;用“优选法”选取醋酸铅的最佳用量[J];新医药通讯;1972年04期
8 陈惠君,李冰深;醋酸铅外洗致铅中毒1例报告[J];中国工业医学杂志;1991年02期
9 李建秀,王晓梅,高丽珍,刘青;醋酸铅染毒雄性小鼠生殖器官的形态改变[J];邯郸医学高等专科学校学报;2002年02期
10 靳翠红;蔡原;刘秋芳;王军明;赵剑;王述森;;醋酸铅对大鼠成骨细胞凋亡影响[J];中国公共卫生;2006年10期
相关会议论文 前7条
1 任雁;杨冬华;李丽;邢立国;;醋酸铅的神经发育毒性机制[A];中国毒理学会第六届全国毒理学大会论文摘要[C];2013年
2 马继霞;毕瑞明;罗大珍;;富硒康口服液对醋酸铅诱发小鼠遗传损伤的防护作用[A];中国营养学会第八届微量元素营养学术会议论文摘要汇编[C];2003年
3 张惠英;陈玉柱;汪岭;张鹏举;丁鹏;;排铅产品的驱铅实验研究[A];中国营养学会第十届微量元素营养学术会议论文摘要汇编[C];2009年
4 黄邵鑫;余君;周郎环;金珊珊;陈莉;王红;汪春红;;GSH和MRP1调节铅在睾丸支持细胞中的排出[A];中国毒理学会第六届全国毒理学大会论文摘要[C];2013年
5 梁建成;石慧娟;孟妍妍;汪春红;;醋酸铅对原代培养小鼠肝细胞超氧化物歧化酶及Cu-Zn SOD mRNA表达的影响[A];湖北省、武汉市营养学会第十一届学术会议论文汇编[C];2007年
6 梁建成;汪春红;张妍;张春莲;王程强;;维生素C、B_1联合作用对醋酸铅致小鼠肝细胞DNA损伤的影响[A];湖北省、武汉市营养学会第十一届学术会议论文汇编[C];2007年
7 邹积艳;李守柔;;叶酸对醋酸铅胚胎发育毒性的拮抗研究[A];第五届全国优生科学大会论文汇编[C];2000年
相关博士学位论文 前1条
1 张莹;铅诱导的中枢神经系统星形胶质细胞内质网应激反应[D];中国医科大学;2008年
相关硕士学位论文 前10条
1 苏红;铁调素在纳米硫化铅和醋酸铅暴露对仔鼠神经损伤中的实验研究[D];华北理工大学;2015年
2 张谊;HIF-1α介导的ROCK信号通路在人参皂苷Rb1保护醋酸铅诱导神经细胞损伤中的作用[D];江苏大学;2016年
3 冯佩佩;醋酸铅与纳米硫化铅暴露对大鼠血脑脊液屏障损伤的比较研究[D];华北理工大学;2016年
4 高晓燕;长期低剂量铅染毒对雏鸡生长发育和主要组织脏器结构及功能的影响[D];河南农业大学;2016年
5 刘茜;PGC-1α在铅致睾丸支持细胞氧化应激与能量代谢中的作用[D];武汉大学;2017年
6 张荣;醋酸铅对大鼠脑组织中神经营养因子及其受体表达的影响以及甲状腺激素调节作用的研究[D];河北医科大学;2004年
7 蒋军军;醋酸铅致脑损伤及肾损伤的细胞机制探讨[D];甘肃农业大学;2010年
8 叶小鹤;四醋酸铅在间接有机电合成中的应用[D];华东师范大学;2005年
9 吝春红;醋酸铅对骨髓造血微环境造血调控机制影响的研究[D];天津医科大学;2009年
10 时金玲;醋酸铅对体外培养小鼠睾丸间质细胞的毒性作用及凋亡机理的研究[D];河南农业大学;2014年
,本文编号:1344486
本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/1344486.html