近红外光谱法评价西红花药材的质量
本文选题:西红花 切入点:商品规格等级 出处:《江苏大学》2017年硕士论文 论文类型:学位论文
【摘要】:西红花为鸢尾科植物番红花Crocus sativus L.的干燥柱头,主产于伊朗、希腊、意大利等地。作为在国际市场上流通的名贵香料和传统药材,西红花的质量评价一直备受关注。西红花苷、藏红花醛、藏红花苦素分别是西红花颜色、香气和苦味的物质基础,三者常被作为指标成分来评价西红花质量的优劣。常见的分析方法主要有UV-VIS法、HPLC法,GC法等。近年来,近红外光谱技术以其快速、无损、携带信息量大等优势而广泛用于中药材的质量评价中。如,采用近红外光谱定量模型,可实现对中药材中化学成分含量的快速预测;采用近红外光谱定性模型,可实现中药材产地、等级信息的快速识别。因此,建立用于西红花药材质量评价的近红外光谱法,将会是现有西红花质量评价体系的一个有益的补充。本研究以收集到的98批产自中国与伊朗的西红花药材作为研究对象,采用多种常规检测方法与近红外光谱法对其进行质量评价,具体内容如下:1.对相关文献进行了综述系统查阅了国内外有关西红花研究的文献资料,对西红花药材来源、化学成分、质量评价、药理作用等方面的研究进展进行了分析与整理,为本课题的顺利实施奠定了基础。2.采用ISO标准对西红花药材进行商品规格等级的划分采用药典法,对样本进行了性状检视和干燥失重的测定。采用ISO-3632中商品等级划分方法,对西红花药材的颜色强度、香气强度、苦味强度进行测定,并基于三者的强度值对样品进行商品规格等级的划分。在所收集的样本中,Ⅰ级样本24批、Ⅱ级36批、Ⅲ级30批,另有8批为不合格样本。同时,采用L*a*b*色度学分析法对西红花药材的颜色进行了分析,结果表明,a*与西红花苷的吸光度值及颜色强度值之间呈现出较好的相关性。3.采用高效液相色谱技术和质谱技术对西红花药材化学成分进行定性定量分析建立了98批西红花样品中化学成分的HPLC指纹图谱,采用质谱技术对8个共有峰中的6个峰进行了归属,分别为藏红花苦素、西红花苷Ⅰ、西红花苷Ⅱ、顺-西红花苷Ⅰ、顺-西红花苷Ⅱ及藏红花醛。在308 nm下,98批样品的指纹图谱相似度较差,表明各样本之间存在化学成分的差异。采用多成分分析法,对中国产与伊朗产西红花药材的质量差异进行了研究。中国产西红花样品中藏红花苦素、西红花苷Ⅱ、藏红花醛的单位质量峰面积高于伊朗样品(P0.05),顺-西红花苷Ⅱ的量却低于伊朗样品(P0.05),西红花苷Ⅰ与顺-西红花苷Ⅰ的量没有明显差异(P0.05)。建立了同时测定西红花药材中西红花苷Ⅰ、西红花苷Ⅱ、藏红花醛含量的HPLC法,并对98批样品中的上述3种成分进行了含量测定。结果显示,西红花苷Ⅰ、西红花苷Ⅱ、藏红花醛的含量范围分别为4.24~17.42%、1.84~7.92%、0.06~0.57%。4.建立了近红外光谱法评价西红花药材的质量采用近红外光谱法,建立了西红花药材的干燥失重数值预测模型,指标成分含量预测模型及产地鉴别模型。西红花药材干燥失重模型的预测性能优良,准确度高(RMSEP、RMSECV、RPD值分别为0.228、0.271、8.86)。西红花苷Ⅰ含量、西红花苷Ⅰ与西红花苷Ⅱ含量之和、藏红花苦素单位质量峰面积的模型预测性能良好,准确度较高(三个模型的RMSEP值分别为0.770、0.905、0.696;RMSECV值分别为0.758、0.890、0.695;RPD值分别为4.14、4.32、4.48);而西红花苷Ⅱ与藏红花醛的含量模型预测性能一般,(两个模型的RMSEP值分别为0.366与0.0355;RMSECV值分别为0.410与0.0408;RPD值分别为2.97与2.54),二者虽可进行相应成分的含量预测,但其准确度有待提高。西红花药材的不同产地鉴别模型中,校正集与验证集的判正率分别为97.22%与96.15%,表明该模型可用于中国产与伊朗产西红花的识别。综上所述,本文以西红花苷(西红花苷Ⅰ与西红花苷Ⅱ)、藏红花醛、藏红花苦素为指标性成分,采用UV-VIS法、L*a*b*色度学分析法、HPLC法及指纹图谱图法、近红外光谱法对98批产自中国与伊朗的西红花药材进行质量研究,完成了其商品规格等级的划分、化学成分定性定量分析方法的建立及近红外光谱定性定量模型的建立。
[Abstract]:Dry stigma saffron crocus as iridaceous plants Crocus sativus L., the main production in Iran, Greece, Italy and other places. As a valuable spices circulation in the international market and traditional medicine, to evaluate the quality of saffron has attracted much attention. Crocin and crocetin dialdehyde, Tibet safflower citruslimonoids are saffron color, aroma and material basis bitter, the three are often used as indicators to evaluate the composition of saffron quality. Common analysis methods include UV-VIS method, HPLC method, GC method and so on. In recent years, near infrared spectroscopy for the rapid, nondestructive, carrying a large amount of information and other advantages and is widely used in the quality evaluation of Chinese medicinal materials. Such as, by using the quantitative model of near infrared spectroscopy, which can realize rapid prediction of the content of chemical components in Chinese medicinal materials; qualitative model of near infrared spectroscopy, which can realize the fast identification of herbal origin, the level of information. Therefore, the establishment of For near infrared spectroscopy to evaluate the quality of saffron, will be a useful supplement to the existing evaluation system of saffron quality. In this study, collected 98 batches from Chinese saffron and Iran as the research object, using conventional detection methods with near infrared spectroscopy to evaluate its quality, the specific contents are as follows 1.: this paper reviews the literatures on the system of literature information on the domestic and foreign research of saffron, saffron, chemical composition, quality evaluation, research progress of pharmacological effect of the collation and analysis, lay a foundation.2. partition by using the ISO Standard Specification of goods grade of saffron by pharmacopoeia method the smooth implementation of this project, the samples were examined and the determination of loss on drying characteristics. The classification method of commercial grade ISO-3632, the anther. Color intensity, material strength of aroma, bitterness intensity were determined, and the three intensity values divided by grade of samples based on the specifications of goods. In the collected samples, 24 batches of samples of grade I, II grade 36 batches, 30 batches, 8 batches of substandard samples otherwise. At the same time, using L*a *b* colorimetric analysis method for the color of saffron were analyzed. The results show that the absorbance of a* and crocin between the values and color intensity values showed good correlation of.3. by high performance liquid chromatography and mass spectrometry of saffron chemical composition by qualitative and quantitative analysis to establish the 98 batch of the chemical composition of saffron samples of HPLC fingerprint by mass spectrometry in 8 there are 6 peaks in the classified, respectively, picrocrocin, crocin 1, crocin II, CIS crocin 1, CIS crocin II and Tibet safflower aldehyde in 308 nm. Next, 98 batches of fingerprint similarity is poor, that differences in chemical composition between each sample. Using multi component analysis method to carry out the research and production of quality differences of Iran saffron production. Chinese Chinese production samples citruslimonoids saffron crocus, crocin II, saffron aldehyde unit mass peak area is higher than that of Iran the sample (P0.05), CIS crocin II amount is lower than the Iran sample (P0.05), crocin 1 and CIS crocin 1 was no significant difference (P0.05). Simultaneous determination of saffron and crocin 1, crocin II, HPLC saffron aldehyde content, and the 98 group in the sample of the above 3 components were determined. The results showed that crocin 1, crocin II, the content range of safranal were 4.24~17.42%, 1.84~7.92%, 0.06~0.57%.4. established the evaluation method of near infrared spectrum West Using near infrared spectroscopy the quality of Flos Carthami, established a numerical prediction model of dry weight loss saffron, identification model and origin model predictive content. Saffron dry weightlessness model prediction performance is good, high accuracy (RMSEP, RMSECV, RPD = 0.228,0.271,8.86). Crocin content of crocin 1. With the crocin II content and picrocrocin in unit mass peak area prediction model has good performance, high degree of accuracy (three model RMSEP = 0.770,0.905,0.696; RMSECV = 0.758,0.890,0.695; RPD = 4.14,4.32,4.48); while the content model of crocin II and safranal prediction performance in general, (two a model of the RMSEP values were 0.366 and 0.0355; RMSECV values were 0.410 and 0.0408; RPD = 2.97 and 2.54), although the two of the corresponding components containing The amount of prediction, but its accuracy needs to be improved. Different discriminating model saffron in the set and validation set positive rate were 97.22% and 96.15% in calibration, the model can be used in identification and Iran production of saffron Chinese. In summary, the west of saffloside (West of saffloside 1 and crocin II) saffron, saffron aldehyde, citruslimonoids index components, using UV-VIS method, analysis method of L*a*b* colorimetry, HPLC method and fingerprint map method, near infrared spectroscopy of the 98 batch of production quality of saffron Chinese and Iran, completed the classification of the commodity specifications and grades, the method of establishing the establishment and quantitative near infrared spectrum qualitative model of qualitative and quantitative analysis of the chemical composition.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R284.1;O657.33
【参考文献】
相关期刊论文 前10条
1 姚建标;金辉辉;何厚洪;王如伟;;西红花特征图谱研究及真伪鉴别[J];中草药;2015年09期
2 郑琪;蒋超;袁媛;曹亮;金艳;;基于特异性聚合酶链式反应的西红花快速分子鉴别研究[J];中国药学杂志;2015年01期
3 王平;童应鹏;陶露霞;邵云东;刘晓平;;西红花的化学成分和药理活性研究进展[J];中草药;2014年20期
4 胡江宁;姚德中;章江生;曹王丽;陈玲芳;;西红花抗肿瘤作用的研究进展[J];安徽农业科学;2014年03期
5 宁娜;韩建军;;西红花酸药理作用的研究进展[J];海峡药学;2014年01期
6 杨永霞;冯琦;王景;崔红;刘国顺;;烟草类胡萝卜素代谢的遗传及基因工程研究进展[J];中国烟草学报;2013年01期
7 石磊;;西红花酸体内外抗氧化作用的研究[J];中国医药指南;2012年15期
8 胡馨;张聪;张英华;;西红花中西红花苷Ⅱ及总苷的近红外光谱研究[J];中国现代中药;2012年05期
9 孙保明;周红超;;西红花及其伪品的生药鉴别[J];中国药业;2012年04期
10 魏惠珍;方少敏;饶毅;周海滨;刘安;田紫平;;近红外光谱技术快速测定白芍药材烘干过程中水分[J];中草药;2011年10期
相关硕士学位论文 前3条
1 李玲蔚;西红花资源生物学与利用技术的研究[D];苏州大学;2013年
2 安慧景;西红花常见伪品的鉴别及掺伪量测定[D];北京协和医学院;2012年
3 张俊国;西红花酸糖苷的化学全合成方法研究[D];四川师范大学;2009年
,本文编号:1631130
本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/1631130.html