外源酚酸对贝达葡萄植株生长及根际土壤微生物作用机制研究
本文选题:贝达 切入点:葡萄 出处:《沈阳农业大学》2016年博士论文 论文类型:学位论文
【摘要】:化感自毒作用和土壤生物因素是导致葡萄连作障碍的主要原因,为了探究酚酸类葡萄自毒物质对土壤微生物的作用机制,本研究以我国北方生产上常用的葡萄砧木‘贝达’(V.riparia×V.labrusca cv. Beta)为试材,采用盆栽避雨栽培,在未栽植贝达葡萄和栽植贝达葡萄的土壤中添加葡萄自毒物质对羟基苯甲酸或水杨酸,测定酚酸类物质在土壤中的含量变化及其对土壤微生物种群结构和功能多样性的影响,分析酚酸类自毒物质对土壤微生物的作用模式,并进一步追踪对羟基苯甲酸进入土壤后的转化产物,定位参与其代谢的功能微生物,以期明确酚酸类物质对贝达葡萄根际土壤微生物作用机制。试验主要结果如下:1.外源对羟基苯甲酸或水杨酸处理影响了贝达葡萄盆栽苗的生长和根系分泌酚酸的含量。对羟基苯甲酸和水杨酸对贝达葡萄盆栽苗的生长表现为低促高抑的作用。0.5mg·g-1对羟基苯甲酸或0.25mg·g-1和0.5mg·g-1水杨酸促进了贝达葡萄盆栽苗的生长发育,1.Omg·g-1、2mg·g-1对羟基苯甲酸或1.Omg·g-1、1.5mg·g-1、2mg·g-1水杨酸处理则起抑制作用;对羟基苯甲酸处理后,贝达葡萄根系分泌的对羟基苯甲酸含量增加,而水杨酸处理后,贝达葡萄根系分泌的水杨酸含量减少。2.外源对羟基苯甲酸和水杨酸处理降低了贝达葡萄根际土壤中两种酚酸的含量。本试验研究发现,贝达葡萄根际土壤中对羟基苯甲酸或水杨酸含量高于未栽植贝达葡萄土壤,表明贝达葡萄通过根系分泌对羟基苯甲酸或水杨酸物增加了其在土壤中含量。而施入对羟基苯甲酸或水杨酸处理后,贝达葡萄根际土壤中的对羟基苯甲酸或水杨酸含量低于未栽植贝达葡萄的土壤,该结果表明外源对羟基苯甲酸或水杨酸可能影响了贝达葡萄根系的分泌特性,改变了土壤微生物种群的结构和功能,间接影响了对羟基苯甲酸或水杨酸在土壤中的含量。3.外源对羟基苯甲酸或水杨酸会快速被土壤吸附和微生物分解转化,72h时对羟基苯基酸的残留量为添加量的0.003%-0.09%,水杨酸的残留量为添加量的5.4%-23.5%。4.对羟基苯甲酸在贝达葡萄根际土壤中发生生物转化形成二聚体。与对照相比,在对羟基苯甲酸处理后6h的贝达葡萄根际土壤中,检测到新的负离子峰(m/z=273.039181),并且直到处理后68h仍能检测到该离子峰的存在,初步认定这种物质为二聚体。5.外源对羟基苯甲酸或水杨酸改变了土壤微生物功能多样性、土壤细菌和真菌群落结构多样性,并且对未栽植和栽植贝达葡萄的土壤影响效应不同。与未栽植贝达葡萄土壤相比,在栽植贝达葡萄土壤中1mg·g-1和2mg·g-1对羟基苯甲酸处理后的细菌群落结构多样性较高,真菌群落结构多样性较低,而0.5mg·g-1处理后土壤细菌和真菌的群落结构多样性都有所提高;与未栽植贝达葡萄土壤相比,各浓度的水杨酸处理均使栽植贝达葡萄土壤中的细菌群落结构多样性升高,真菌群落结构多样性降低。6.本研究共定位了14个类群的微生物参与了对羟基苯甲酸在贝达葡萄根际土壤中的转化包括甲基养菌属(Methylibium)、贪铜菌属(Cupriavidus)、沙壤土杆菌属(Ramlibacter)芽殖球菌属(Blastococcus)、军团菌属(Legionella)、嗜甲基菌属(Methylophilus)、节杆菌属(Arthrobacter)、固氮弯曲菌属(Azoarcus)、固氮菌属(Azotobacter)、新鞘氨醇菌属(Novosphingobium)、假单胞菌属(Pseudomonas)、和福格斯氏菌属(Vogesella)、溶杆菌属(Lysobacter)和嗜甲基菌科(Methylophilaceae_uncultured),其中后8种类型可能参与了N素在土壤中的转化。7.本研究分离并筛选出以对羟基苯甲酸为碳源的真菌5株,以水杨酸为碳源的真菌5株。以对羟基苯甲酸为碳源的5株真菌分别为细极链格孢菌属(Alternaria tenuissima)、青霉菌属(Penicillium sp.)、小克银汉霉菌属(Cunninghamella elegans)、木霉属(Trichoderma harzianum)和产黄青霉属(Penicillium chrysogenum);以水杨酸为碳源的5株真菌分别为细极链格孢菌属(Alternaria tenuissima)、木霉属(Trichoderma)、青霉菌属(Penicillium)、尖孢镰刀菌属(Fusarium oxysporum)和毛霉菌属(Mucor circinelloides)。其中细极链格孢菌属(Alternaria tenuissima)对对羟基苯甲酸或水杨酸的平均代谢效率最高,并对贝达葡萄盆栽苗的生长表现出抑制作用,贝达葡萄植株的株高、茎粗和地上鲜重分别下降了14.92%、2.76%和16.82%。
[Abstract]:The allelopathic effects and soil biological factors is the main cause of grape replanting obstacle, in order to explore the mechanism of phenolic acids in grape from toxic substances on soil microorganisms, the study in northern China produced the common grape rootstock 'beta' (V.riparia * V.labrusca cv. Beta) as test materials, using pot cultivation. Add the grape autotoxin p-hydroxybenzoic acid or salicylic acid before planting and planting grapes Beida Beida grape soil, determination of content changes of phenolic acids in soil and its influence on the diversity of soil microbial community structure and function, analysis of phenolic acids from the mode of action of toxic substances on soil microorganisms, and further to track conversion products of hydroxy benzoic acid in soil, microorganisms involved in its metabolism function positioning, in order to clarify the effects of phenolic acids on rhizosphere soil microbes in Beida grapes The mechanism. The main results are as follows: 1. exogenous p-hydroxybenzoic acid or salicylic acid treatment of Beida grape potted seedling growth and root content of phenolic acid secretion. On growth performance of hydroxy benzoic acid and salicylic acid on Beida grape potted seedlings of p-hydroxybenzoic acid or 0.25mg - g-1 and 0.5mg - g-1 salicylic acid promoted the Beida grape pot seedling growth promotion in low high suppression role of.0.5mg - g-1, 1.Omg - g-1,2mg - g-1 hydroxybenzoic acid or 1.Omg - g-1,1.5mg - g-1,2mg - g-1 salicylic acid inhibited; p-hydroxybenzoic acid, Beida grape root exudates of p-hydroxybenzoic acid content increased, while salicylic acid, salicylic acid the content of Beida grape root exudates reduce exogenous.2. decreased the content of two kinds of grape rhizosphere soil phenolic acids of beta hydroxy benzoic acid and salicylic acid. The study found that Beida grape The grapes in the rhizosphere soil of p-hydroxybenzoic acid or salicylic acid content was higher than that of soil planting Beida grape, Beida grape root exudates by p-hydroxybenzoic acid or salicylic acid were added to its content in the soil. And the application of p-hydroxybenzoic acid or salicylic acid, grape rhizosphere soil in beta hydroxy benzoic acid or the content of salicylic acid was less than the planting of Beida grape soil, the results indicated that the exogenous may affect the secretion characteristics of Beida grape root p-hydroxybenzoic acid or salicylic acid, change the structure and function of soil microbial population, the indirect influence on the content of exogenous.3. hydroxy benzoic acid or salicylic acid in soil p-hydroxybenzoic acid or salicylic acid will fast soil adsorption and microbial decomposition, 72h hydroxybenzoic acid residues as the amount of 0.003%-0.09% added, the amount of salicylic acid residues for 5.4%-2 Biotransformation of 3.5%.4. two dimer formation of p-hydroxybenzoic acid in grape rhizosphere soil. It compared with the control, the Beida grape rhizosphere soil 6h hydroxybenzoic acid after treatment, detected negative ion peak of the new (m/z=273.039181), and until after 68H treatment can still detect the ion peak the existence of this material is initially identified two dimer.5. exogenous p-hydroxybenzoic acid or salicylic acid changed the microbial diversity of soil bacteria and fungi community structure diversity, and the effects of soil on planting and planting of Beida grape is different. Compared with non cultivated soil in Beida grape planting soil, Beida grape in 1mg - g-1 and 2mg - g-1 on bacterial community structure hydroxybenzoic acid treated higher diversity, fungal community structure diversity is low, while the 0.5mg g-1 after the treatment of community structure of soil bacteria and fungi diversity Increased; compared with the planting of Beida grape soil, the concentration of salicylic acid showed that planting Beida grape in soil bacterial diversity increased, fungal community structure diversity decreased.6. the co localization of 14 kinds of microbes involved in the conversion of hydroxy benzoic acid in the rhizosphere soil of Beida grape a genus including methyl (Methylibium), cupriaridus sp. (Cupriavidus), sandy loam bacillus (Ramlibacter) budding coccus (Blastococcus), Legionella (Legionella), the genus methylophilus (Methylophilus), Arthrobacter sp. (Arthrobacter), nitrogen (Azoarcus), Campylobacter genus Azotobacter (Azotobacter), novosphingobium genus (Novosphingobium), Pseudomonas sp. (Pseudomonas), and Fuchs's genus (Vogesella), Lysobacter spp. (Lysobacter) and methylophilus Department (Methylophilaceae_uncultured), after which the 8 types of May participate in the N isolated in this study in the transformation of.7. in soil and screened by p-hydroxybenzoic acid as carbon source, 5 strains of fungi, with salicylic acid as carbon source, 5 strains of fungi. P-hydroxy benzoic acid as carbon source, 5 strains of fungi were Alternaria tenuissima (genus Alternaria tenuissima), Penicillium (Penicillium sp.), Cunninghamella blakesleana (Cunninghamella elegans), belonging to the genus Trichoderma (Trichoderma harzianum) and Penicillium chrysogenum (Penicillium chrysogenum); using salicylic acid as carbon source, 5 strains of fungi were Alternaria tenuissima (genus Alternaria, genus Trichoderma (tenuissima) Trichoderma) (Penicillium), Penicillium, Fusarium oxysporum genus (Fusarium oxysporum) and Mucor (Mucor circinelloides). The genus Alternaria tenuissima (Alternaria tenuissima) of p-hydroxybenzoic acid or salicylic acid the average metabolic efficiency is the highest, and the Beida grape seedlings The growth was inhibited, Beida grape plant height, stem diameter and fresh weight were decreased by 14.92%, 2.76% and 16.82%.
【学位授予单位】:沈阳农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S663.1
【参考文献】
相关期刊论文 前10条
1 张放;;2014年我国水果生产统计分析(二)[J];中国果业信息;2016年01期
2 张放;;2014年我国水果生产统计分析(一)[J];中国果业信息;2015年12期
3 陈立华;常义军;王长春;邵孝侯;缪其松;;枯草芽孢杆菌D9生物有机肥对连作芦蒿扦插苗枯萎病病害防控研究[J];农业资源与环境学报;2016年01期
4 和文祥;李天伦;田霄鸿;耿增超;;基于土壤酶的酚酸类化感物质效应研究[J];西北农业学报;2015年06期
5 王西锐;;猕猴桃重茬栽植障碍问题探讨[J];西北园艺(果树);2015年03期
6 李俊芝;王功帅;胡艳丽;陈学森;毛志泉;;几种低分子量有机酸对连作平邑甜茶幼苗光合与根系生长的影响[J];园艺学报;2014年12期
7 夏围围;贾仲君;;高通量测序和DGGE分析土壤微生物群落的技术评价[J];微生物学报;2014年12期
8 吴林坤;林向民;林文雄;;根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J];植物生态学报;2014年03期
9 马红梅;陈永敢;徐小雄;张耀辉;;灵芝连作障碍的土壤微生态研究[J];山东农业大学学报(自然科学版);2013年04期
10 李勇;胡陈云;丁万隆;刘敏;;自毒物质胁迫对人参根系分泌物组成的影响[J];世界科学技术-中医药现代化;2013年07期
相关博士学位论文 前3条
1 田给林;连作草莓土壤酚酸类物质的化感作用及其生物调控研究[D];中国农业大学;2015年
2 张江红;酚类物质对苹果的化感作用及重茬障碍影响机理的研究[D];山东农业大学;2005年
3 吴凤芝;外源酚酸对黄瓜自毒作用的生理生化机制研究[D];东北农业大学;2002年
相关硕士学位论文 前5条
1 徐文凤;环渤海湾地区重茬苹果园土壤真菌群落多样性及生防真菌的筛选[D];山东农业大学;2011年
2 杨阳;外源酚酸对欧美杨Ⅰ-107水培幼苗形态与生理生化特性的影响[D];山东农业大学;2010年
3 杜霄霞;草莓酚酸类自毒物质降解菌筛选及对草莓防病促生作用研究[D];西北农林科技大学;2009年
4 闵晓芳;柑橘采后致病青霉的分离鉴定及其生物学特性研究[D];华中农业大学;2007年
5 杜国营;黄瓜根系分泌物中化感物质的鉴定及其生物降解研究[D];河南农业大学;2006年
,本文编号:1567765
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1567765.html