苹果SUMO E3连接酶MdSIZ1调控逆境应答和花青苷积累的研究
[Abstract]:Post-translation modification plays an important role in eukaryotes. SUMO (small ubiquitin-related modifier (ubiquitin related modifier) is an important post-translation modification in eukaryotes. There are three enzymes involved in the process of SUMO binding substrate, namely E1 (activating enzyme), E2 (binding enzyme) and E3 (ligase). Plant SIZ1, as an E3 ligase, promotes the binding of substrate to target protein. Siz1 regulates SUMO binding under stress. SIZ1 protein has been found in Arabidopsis, rice, Dendrobium and apple. However, the mechanism of MdSIZ1 in apple, the only woody plant, has not been studied. In this study, we studied the function of MdSIZ1 in apple and the physiological process of its regulation. It has been found that MdSIZ1 in apple can play the role of SUMO E3 ligase in vivo and in vitro. Low temperature, high temperature and abscisic acid treatment can lead to the increase of SUMO binding level in apple tissue culture seedlings. The ectopic expression of MdSIZ1, in Arabidopsis mutant siz1-2 partially restored the defective phenotype and SUMO binding level of Arabidopsis thaliana. It has been proved that MdSIZ1 and At SIZ1 have similar functions, and MdSIZ1 mediated Sumo plays an important role in regulating plant adaptation to stress. AtSIZ1 regulated phosphorus deficiency stress in Arabidopsis thaliana. In this study, it was found that the expression of MdSIZ1 and the level of SUMO binding were significantly increased in the tissue culture seedlings treated with phosphorus deficiency. In apple, MYB transcription factor MdPHR1 induced by phosphorus deficiency was modified by sumo. Ectopic expression of MdSIZ1 gene partially restored the mutant phenotype of Arabidopsis mutants siz1-2 under phosphorus deficiency. It was also found that the survival rate of mutant siz1-2 was significantly lower than that of wild type under the condition of phosphorus deficiency, while the ectopic expression of MdSIZ1 gene partially restored the decrease of survival rate. In order to verify the effect of MdSIZ1 on phosphorus deficiency stress in apple, we studied MdSIZ1 transgenic calli with overexpression and silencing expression. The results showed that under the condition of phosphorus deficiency, the fresh weight of calli overexpressing MdSIZ1 was higher than that of wild type, while the calli silent expressing MdSIZ1 could not grow under the condition of phosphorus deficiency. It has been proved that the overexpression of MdSIZ1 improves the tolerance of apple to phosphorus deficiency stress. In apple, fruit color is an important appearance quality trait, and anthocyanin is an important secondary metabolite that determines apple fruit color. Anthocyanin synthesis is regulated by temperature, light, nutrients and plant hormones. Transcription factor MdMYB1 plays an important role in regulating anthocyanin synthesis. Yeast two-hybrid screening library was carried out with MdMYB1. The sequencing results of positive clones showed that MdMYB1 might interact with MdSIZ1, and then the interaction between MdMYB1 and Pull-Down, was double hybrid by yeast. As proved by Co-IP test. Subsequent studies showed that MdSIZ1, as a SUMO E3 ligase, regulated the summatization of MdMYB1, and the stability of MdMYB1 protein modified by sumo was improved to prevent its degradation by 26s proteasome. In addition, it was found that MdSIZ1 regulated anthocyanin synthesis through sumo MYB1 in calli and apple fruit. To sum up, MdSIZ1 plays an important role in apple adaptation to stress and regulation of secondary metabolism, so the study of the molecular mechanism of MdSIZ1 has certain guiding significance for improving apple resistance and improving apple quality.
【学位授予单位】:山东农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S661.1
【相似文献】
相关期刊论文 前10条
1 齐建勋,郝艳宾,张玫,冷平;桃叶片中花青苷含量与叶绿素含量的相关关系[J];园艺学报;2002年03期
2 李跃;刘延吉;;果实花青苷代谢机制及调控技术研究[J];安徽农业科学;2007年16期
3 潘牧;雷尊国;邓宽平;;彩色马铃薯花青苷研究进展[J];农产品加工(学刊);2010年08期
4 张春雨;王晶莹;郭庆勋;周连霞;贾承国;;越橘果实花青苷含量及其不同发育阶段的变化[J];东北农业大学学报;2012年04期
5 张茜;杨健;王龙;王苏珂;李秀根;张绍铃;;红皮梨着色与花青苷合成研究进展[J];果树学报;2012年04期
6 张茜;杨健;王龙;王苏珂;李秀根;张绍铃;;‘红太阳’梨花青苷与可溶性糖的相关性分析及外源糖的增色作用研究[J];果树学报;2013年02期
7 王惠聪,黄旭明,胡桂兵,黄辉白;荔枝果皮花青苷合成与相关酶的关系研究[J];中国农业科学;2004年12期
8 鞠志国;;轮纹病菌侵染与苹果花青苷的合成[J];莱阳农学院学报;1988年02期
9 傅友;温度对苹果花青苷合成的影响[J];河北果树;1993年03期
10 胡桂兵,陈大成,李平,欧阳若,高飞飞,王卫华;荔枝果皮花青苷与内源激素含量的变化规律[J];福建果树;2000年01期
相关会议论文 前6条
1 刘安成;李慧;王亮生;庞长民;;不同干燥方法对石榴果实花青苷的影响[A];中国植物园(第十四期)[C];2011年
2 牛姗姗;徐昌杰;张波;张望舒;李鲜;陈昆松;;杨梅花青苷合成及调节基因在三个不同色泽品种果实中的差异表达(摘要)[A];第二届全国果树分子生物学学术研讨会论文集[C];2009年
3 王庆菊;吕福梅;沈向;;四种李属红叶树种叶片花青苷提取及稳定性研究[A];中国园艺学会第七届青年学术讨论会论文集[C];2006年
4 冯立娟;苑兆和;尹燕雷;招雪晴;;‘红叶短枝'卫矛变色期叶片中花青苷含量及其合成相关酶活性变化的研究[A];中国观赏园艺研究进展2012[C];2012年
5 田鹏;魏闻东;苏艳丽;;红太阳果实花青苷含量、pH和SSC变化及相关性研究[A];梨科研与生产进展(五)[C];2011年
6 胡桂兵;王惠聪;高飞飞;陈大成;;套袋过程中荔枝果皮内色素的变化动态[A];中国园艺学会第五届青年学术讨论会论文集[C];2002年
相关博士学位论文 前10条
1 魏海蓉;甜樱桃果实花青苷形成的生理生化与转录组分析[D];山东农业大学;2015年
2 张蕊芬;苹果SUMO E3连接酶MdSIZ1调控逆境应答和花青苷积累的研究[D];山东农业大学;2016年
3 冯守千;红梨着色机理的研究[D];山东农业大学;2011年
4 张洁;四种观赏植物花青苷分析及其花色形成机制[D];西北农林科技大学;2011年
5 刘玉莲;不同色泽类型苹果着色期糖酸变化及花青苷合成特性研究[D];西北农林科技大学;2013年
6 陈静;花青苷对番茄(Lycopersicon esculentum Mill.)幼苗叶片光合机构的保护作用及番茄花青苷结构特性的研究[D];西北农林科技大学;2005年
7 俞波;红色砂梨花青苷生物合成相关基因分离及表达研究[D];浙江大学;2012年
8 刘晓芬;MYB-bHLH-WD40对杨梅花青苷生物合成的转录调控机制[D];浙江大学;2013年
9 谢兴斌;苹果bHLH转录因子MdTTL1对低温诱导花青苷合成和果实着色的多途径调控[D];山东农业大学;2011年
10 安秀红;苹果MdTTG1、MdMYB9与MdMYB11基因调控花青苷合成的作用机制研究[D];山东农业大学;2013年
相关硕士学位论文 前10条
1 吴然;苹果锈果类病毒的时空分布规律及对花青苷合成和相关基因的影响[D];河北农业大学;2015年
2 陈磊;采前ALA/GNT处理和气调贮藏方式对苹果花青苷及相关基因表达的影响[D];陕西师范大学;2015年
3 李霞;施钾对紫甘薯块根花青苷积累的影响[D];江苏师范大学;2014年
4 孙志伟;桃果肉中花青苷合成相关转录因子基因MYB的克隆及其表达分析[D];南京农业大学;2014年
5 王艳龙;黑米花青苷提取及其在酒溶液中稳定性的研究[D];陕西理工学院;2010年
6 赵鑫;天然花青苷提取纯化及降血脂作用的研究[D];东北林业大学;2005年
7 毕秀丽;花青苷在高温强光下对苹果叶片及果皮的保护机制[D];西北农林科技大学;2014年
8 杜纪红;桃果实花青苷和糖酸含量变化及其与套袋关系研究[D];南京农业大学;2007年
9 闫伟明;紫皮大蒜鳞茎外皮花青苷生物合成影响因素和相关酶研究[D];西北农林科技大学;2014年
10 华星;蓝莓果实关键品质形成规律及花青苷合成相关酶的研究[D];北京林业大学;2012年
,本文编号:2480934
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2480934.html