油菜角果长度调控机制的系统解析
发布时间:2021-09-23 16:02
角果长度是与油菜产量紧密相关的重要性状。在油菜种质资源中,角果长度变现出很大的变异幅度,但其调控机制和基因基本上不清楚。为此,本研究利用油菜核心关联群体及其中的角果长度极端品系从遗传、生理、细胞和分子(包括转录组测序和候选基因功能验证)水平进行了系统的研究,以揭示油菜角果长度的调控机制和基因。获得的主要研究结果如下:(一)对23份角果长度极端品系(12份为长角果,11份为短角果)的角果发育动态进行了连续(开花当天至花后四周)观察,结果表明:角果极长和极短品系分别在花后12-15天和9-12天的生长速率最快;两者角果长度的最终差异主要决定于花后的生长速率和/或持续时间。据此,对影响角果发育的激素、光合速率和叶绿素含量等进行了测定,其中角果的生长素、乙烯含量以及叶片的光合速率在两类材料之间存在显著差异。(二)对23份角果长度极端品系角果发育起始和长度定型期进行显微观察,结果表明:(1)开花当天,角果极长和极短品系的子房长度平均为7.2和6.0毫米,前者只是后者的1.2倍;而花后四周,角果极长和极短品系的角果长度平均为78.4和38.2毫米,前者达到了后者的2.1倍;(2)从开花当天到花后四...
【文章来源】:中国农业科学院北京市
【文章页数】:138 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
LIST OF ABBREVIATIONS
Chapter 1:General Introduction
1.1 Importance of rapeseed
1.2 Importance of silique length
1.3 QTL Mapping of silique length in Brassica
1.4 Gene cloning of silique length in Brassica
1.5 Regulatory pathways of silique length in Arabidopsis
1.5.1 Phytohormones
1.5.2 Transcription factors
1.5.3 Elongation factors
1.5.4 Micro RNA
1.5.5 Ubiquitin pathway
1.5.6 G-protein signaling
1.5.7 Receptor kinase signaling
1.5.8 Arabinogalactan proteins
1.5.9 RNA-binding proteins
1.5.10 Other proteins
1.6 The objective and significance of the current research
1.6.1 Objectives
1.6.2 Significance
Chapter 2:Physiological and cytological basis of silique length variation in extreme accessions
2.1 Materials and methods
2.1.1 Plant materials and field trials
2.1.2 Dynamic observation of the silique development
2.1.3 Quantification of phytohormones
2.1.4 Measurement of the photosynthetic rate of leaf
2.1.5 Measurement of the chlorophyll content of leaf
2.1.6 Microscopic observation of cell number and size in silique wall
2.1.7 Data analysis
2.2 Results
2.2.1 Dynamic observation of silique development for long-and short-silique lines
2.2.2 Silique length variation is associated with the level of endogenous phytohormones
2.2.3 Measurements of the photosynthetic rate of the leaf(Long vs Short silique lines)
2.2.4 Measurements of Chlorophyll content in the leaf(Long vs Short silique lines)
2.2.5 Microscopic observation of cell number and size in silique wall
2.2.6 Correlation of silique length with seed weight,seed number,and silique number
2.3 Discussion
Chapter 3:GWAS of silique length in rapeseed
3.1 Materials and methods
3.1.1 Plant materials and field trials
3.1.2 DNA extraction and SNP genotyping
3.1.3 Genome-wide association study
3.1.4 Statistical Analysis
3.1.5 Candidate genes and its expression analysis
3.2 Results
3.2.1 Phenotypic variation and heritability of silique length for the association population in ten environments
3.2.2 GWAS of silique length in ten environments
3.3 Discussion
Chapter 4:Comparative transcriptome analysis between long-and short-silique accessions
4.1 Materials and methods
4.1.1 Plant materials
4.1.2 RNA-seq experiment process
4.1.3 Reference genome comparison
4.1.4 Analysis of gene expression
4.1.5 Expression difference analysis
4.1.6 Cluster analysis of differential gene expression
4.1.7 Differential genes GO Classification Statistics and Enrichment Analysis
4.1.8 Visualization of differential gene KEGG pathway and enrichment analysis
4.1.9 Significant differentially expressed gene DEG screening
4.2 Results
4.2.1 Transcriptome sequencing and mapping
4.2.2 Correlation coefficient between samples
4.2.3 Gene expression analysis
4.2.4 Significant DEG screening
4.2.5 Differential gene expression pattern clustering
4.2.6 Differential gene GO Classification Statistics
4.2.7 Differential gene KEGG pathway enrichment analysis
4.2.8 Differentially expressed genes(DEGs)in the silique wall are highly associated with silique development
4.3 Discussion
Chapter 5:Candidate genes identification and functional verification
5.1 Materials and methods
5.1.1 Plant materials,strains,and vectors
5.1.2 Target selection
5.1.3 Binary vector construction
5.1.4 Identify positive clones and extract plasmids
5.1.5 Agrobacterium tumefaction's-mediated genetic transformation
5.1.6 Screening and identification of genetically modified plants from Arabidopsis thaliana
5.1.7 Observation and test of Arabidopsis gene-positive plants
5.1.8 Quantification of the expression of candidate genes
5.2 Results
5.2.1 Identification of candidate genes for silique length by the integrative analysis of GWAS and RNA-seq/functional prediction
5.2.2 Validation of Bna A9.ARF18 and Bna A9.CYP78A9 by candidate gene association analysis
5.2.3 Preliminary validation of other candidate gens by editing their orthologues in Arabidopsis using the CRISPR/Cas9 system
5.3 Discussion
Chapter 6:Conclusions
References
Appendices
Acknowledgement
Author's Biography
Personal Information
Academic Qualification
Recent Awards
List of Publications during the Ph.D.study
Abstract Publication
【参考文献】:
期刊论文
[1]Rapeseed research and production in China[J]. Qiong Hu,Wei Hua,Yan Yin,Xuekun Zhang,Lijiang Liu,Jiaqin Shi,Yongguo Zhao,Lu Qin,Chang Chen,Hanzhong Wang. The Crop Journal. 2017(02)
[2]特大粒甘蓝型油菜籽粒和角果发育形态特征[J]. 陈苇,李劲峰,张国建,罗延青,赵凯琴,周丕才,瞿观,俎峰,董云松,王敬乔. 中国油料作物学报. 2013(06)
本文编号:3406003
【文章来源】:中国农业科学院北京市
【文章页数】:138 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
LIST OF ABBREVIATIONS
Chapter 1:General Introduction
1.1 Importance of rapeseed
1.2 Importance of silique length
1.3 QTL Mapping of silique length in Brassica
1.4 Gene cloning of silique length in Brassica
1.5 Regulatory pathways of silique length in Arabidopsis
1.5.1 Phytohormones
1.5.2 Transcription factors
1.5.3 Elongation factors
1.5.4 Micro RNA
1.5.5 Ubiquitin pathway
1.5.6 G-protein signaling
1.5.7 Receptor kinase signaling
1.5.8 Arabinogalactan proteins
1.5.9 RNA-binding proteins
1.5.10 Other proteins
1.6 The objective and significance of the current research
1.6.1 Objectives
1.6.2 Significance
Chapter 2:Physiological and cytological basis of silique length variation in extreme accessions
2.1 Materials and methods
2.1.1 Plant materials and field trials
2.1.2 Dynamic observation of the silique development
2.1.3 Quantification of phytohormones
2.1.4 Measurement of the photosynthetic rate of leaf
2.1.5 Measurement of the chlorophyll content of leaf
2.1.6 Microscopic observation of cell number and size in silique wall
2.1.7 Data analysis
2.2 Results
2.2.1 Dynamic observation of silique development for long-and short-silique lines
2.2.2 Silique length variation is associated with the level of endogenous phytohormones
2.2.3 Measurements of the photosynthetic rate of the leaf(Long vs Short silique lines)
2.2.4 Measurements of Chlorophyll content in the leaf(Long vs Short silique lines)
2.2.5 Microscopic observation of cell number and size in silique wall
2.2.6 Correlation of silique length with seed weight,seed number,and silique number
2.3 Discussion
Chapter 3:GWAS of silique length in rapeseed
3.1 Materials and methods
3.1.1 Plant materials and field trials
3.1.2 DNA extraction and SNP genotyping
3.1.3 Genome-wide association study
3.1.4 Statistical Analysis
3.1.5 Candidate genes and its expression analysis
3.2 Results
3.2.1 Phenotypic variation and heritability of silique length for the association population in ten environments
3.2.2 GWAS of silique length in ten environments
3.3 Discussion
Chapter 4:Comparative transcriptome analysis between long-and short-silique accessions
4.1 Materials and methods
4.1.1 Plant materials
4.1.2 RNA-seq experiment process
4.1.3 Reference genome comparison
4.1.4 Analysis of gene expression
4.1.5 Expression difference analysis
4.1.6 Cluster analysis of differential gene expression
4.1.7 Differential genes GO Classification Statistics and Enrichment Analysis
4.1.8 Visualization of differential gene KEGG pathway and enrichment analysis
4.1.9 Significant differentially expressed gene DEG screening
4.2 Results
4.2.1 Transcriptome sequencing and mapping
4.2.2 Correlation coefficient between samples
4.2.3 Gene expression analysis
4.2.4 Significant DEG screening
4.2.5 Differential gene expression pattern clustering
4.2.6 Differential gene GO Classification Statistics
4.2.7 Differential gene KEGG pathway enrichment analysis
4.2.8 Differentially expressed genes(DEGs)in the silique wall are highly associated with silique development
4.3 Discussion
Chapter 5:Candidate genes identification and functional verification
5.1 Materials and methods
5.1.1 Plant materials,strains,and vectors
5.1.2 Target selection
5.1.3 Binary vector construction
5.1.4 Identify positive clones and extract plasmids
5.1.5 Agrobacterium tumefaction's-mediated genetic transformation
5.1.6 Screening and identification of genetically modified plants from Arabidopsis thaliana
5.1.7 Observation and test of Arabidopsis gene-positive plants
5.1.8 Quantification of the expression of candidate genes
5.2 Results
5.2.1 Identification of candidate genes for silique length by the integrative analysis of GWAS and RNA-seq/functional prediction
5.2.2 Validation of Bna A9.ARF18 and Bna A9.CYP78A9 by candidate gene association analysis
5.2.3 Preliminary validation of other candidate gens by editing their orthologues in Arabidopsis using the CRISPR/Cas9 system
5.3 Discussion
Chapter 6:Conclusions
References
Appendices
Acknowledgement
Author's Biography
Personal Information
Academic Qualification
Recent Awards
List of Publications during the Ph.D.study
Abstract Publication
【参考文献】:
期刊论文
[1]Rapeseed research and production in China[J]. Qiong Hu,Wei Hua,Yan Yin,Xuekun Zhang,Lijiang Liu,Jiaqin Shi,Yongguo Zhao,Lu Qin,Chang Chen,Hanzhong Wang. The Crop Journal. 2017(02)
[2]特大粒甘蓝型油菜籽粒和角果发育形态特征[J]. 陈苇,李劲峰,张国建,罗延青,赵凯琴,周丕才,瞿观,俎峰,董云松,王敬乔. 中国油料作物学报. 2013(06)
本文编号:3406003
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/3406003.html