基于单目视频相机的实时人脸跟踪与动画方法研究
[Abstract]:The use of computer to generate realistic face animation has always been an important research topic in computer graphics. In recent decades, researchers have carried out a lot of research and fruitful achievements around this topic. In industrial applications such as video game making, people usually rely on some special equipment, and It requires a variety of complex operations and large numbers of operations to accurately track face motion and create a highly realistic face animation. However, these expensive devices and time-consuming calculations do not apply to applications for ordinary users. For ordinary users, a single visual frequency camera is used to track and generate face motion in real time. Face animation is the simplest and most effective method. The current face tracking and animation technology based on monocular video camera has a large gap between the accuracy, stability, the authenticity, the richness and the expressiveness of face animation, and the method based on the special device. The real-time face tracking and animation technology based on monocular video camera has been deeply studied. A series of innovative algorithms are proposed. It provides an effective way for the ordinary users to use monocular video cameras for accurate, efficient face motion tracking and the generation of realistic face animation. It covers three core components of face animation technology: face model representation, face motion tracking capture and digital substitutes generation. The specific work is as follows: 1. in face model representation, we developed a FaceWarehouse for visual computation for the lack of expressive expressiveness in the existing face database. The 3D facial expression database.FaceWarehouse uses a RGB-D camera to scan the geometric texture data of 150 users under 20 different expressions. Based on these data, we generate a specific expression fusion model for each user, including the user's 47 basis for the description of the face action coding system. In the end, we construct a bilinear face model with the 150 users' expression fusion model. The bilinear face model can be used to represent the shape of the face of different users under different expressions. Therefore, we can be used in various visual computing applications for.2. in the face tracking and capture of face movement. We propose three kinds of methods based on this model. A real-time face motion tracking method for monocular video cameras.A) first, we propose a real-time face tracking method based on 3D shape regression. This method generates a specific 3D face shape regression for each specific user, and uses the regression device to track face features accurately in the user's face video. Three dimensional position.B), aiming at the problem of preprocessing for each particular user in the foregoing method, we propose a novel face shape representation method of the offset dynamic expression (DDE) model, and a fully automatic real time face motion tracking method based on the DDE model is proposed. This method can be used arbitrarily. The user carries out accurate face motion tracking without any preprocessing process.C). On the basis of the previous work, we propose a real-time and high precision face motion tracking capture method. This method can calculate the local details from the local appearance of the face, and then reconstruct the high precision face geometric model, including the face geometric model. With the rich facial details, such as wrinkles, such as wrinkles and other.3., we propose an image based dynamic substitute expression based on a user's collection of dozens of images, the facial expression fusion model and the hair deformation model for the user. These images and models are built. The dynamic substitute, driven by the human face motion tracking system, can generate a realistic face animation, including the rich details of the user's face, and the effect of a realistic hair movement.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 伊昭荣;郑豪;岳国宾;;人脸跟踪技术综述[J];福建电脑;2012年11期
2 梁路宏,艾海舟;基于人脸检测的人脸跟踪算法[J];计算机工程与应用;2001年17期
3 周德华,毛敏峰,徐浩;一种多人脸跟踪算法的研究与实现[J];电视技术;2005年05期
4 徐力群;吴晓娟;葛庆国;;实时人脸跟踪算法[J];电子测量技术;2005年01期
5 刘强;蔡灿辉;黄金凤;邹溢;;一种快速人脸跟踪系统[J];福建电脑;2006年06期
6 季剑岚;王俭;;一种实时人脸跟踪方法[J];苏州科技学院学报(工程技术版);2007年02期
7 张涛;蔡灿辉;;一种快速多人脸跟踪算法[J];电视技术;2009年02期
8 王全;杜云明;;基于序列蒙特卡罗滤波的人脸跟踪算法[J];微计算机信息;2009年15期
9 陈俊;;人脸跟踪方法综述[J];全国商情(经济理论研究);2009年15期
10 马波;周越;;一种新的多视角人脸跟踪算法[J];上海交通大学学报;2010年07期
相关会议论文 前8条
1 陈阳;徐一华;李京峰;贾云得;;一种基于多区域模型的实时人脸跟踪方法[A];第十二届全国图象图形学学术会议论文集[C];2005年
2 段其昌;周奇;段盼;;基于改进粒子滤波的实时鲁棒人脸跟踪算法[A];2009中国控制与决策会议论文集(2)[C];2009年
3 夏思宇;潘泓;金立左;夏良正;;基于肤色与运动特征的人脸跟踪方法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
4 胡银焕;安国成;张风军;戴国忠;;基于在线修正的复杂姿态人脸跟踪算法[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
5 邬正义;胡守文;谈正;;一种视频人脸跟踪算法[A];第十七届全国过路控制会议论文集[C];2006年
6 杜云明;刘启生;邵东伟;姜冬华;;基于肤色特征的粒子滤波人脸跟踪算法[A];第十二届中国体视学与图像分析学术会议论文集[C];2008年
7 李建华;付月生;高庆华;;基于改进Camshift算法的人脸跟踪方法[A];第六届全国信息获取与处理学术会议论文集(1)[C];2008年
8 邢文浩;阮秋琦;;基于边缘方向直方图的mean-shift人脸跟踪[A];图像图形技术研究与应用2009——第四届图像图形技术与应用学术会议论文集[C];2009年
相关博士学位论文 前4条
1 曹晨;基于单目视频相机的实时人脸跟踪与动画方法研究[D];浙江大学;2016年
2 江艳霞;视频人脸跟踪识别算法研究[D];上海交通大学;2007年
3 刘青山;人脸跟踪与识别的研究[D];中国科学院研究生院(自动化研究所);2003年
4 苏从勇;人脸感知:基于学习的人脸跟踪与合成[D];浙江大学;2005年
相关硕士学位论文 前10条
1 钟端玮;基于Opencv的Visual Mouse系统的设计与实现[D];电子科技大学;2014年
2 史凌yN;基于视频流的人脸识别关键技术研究[D];浙江师范大学;2015年
3 陈兴;基于Zedboard平台人脸跟踪系统的设计实现[D];西安电子科技大学;2015年
4 伍靓;人脸跟踪中的在线学习方法研究[D];湘潭大学;2015年
5 陈丹丹;基于视频的非接触式心率测量研究[D];华南理工大学;2016年
6 徐桂从;人脸的跟踪识别与年龄估计[D];华南理工大学;2016年
7 时磊;基于压缩感知的人脸跟踪的研究[D];华北电力大学;2016年
8 兰琦;视频序列中的人脸检测与跟踪技术研究[D];中国科学院大学(中国科学院光电技术研究所);2017年
9 刘强;快速人脸跟踪系统[D];华侨大学;2007年
10 韩旭;基于运动趋势估计的人脸跟踪技术研究[D];东北大学;2009年
,本文编号:2165055
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2165055.html