灵芝酸A药代动力学及灵芝潜在药物相互作用研究
本文关键词: 灵芝 灵芝酸A 代谢产物 药代动力学 转运机制 药物相互作用 出处:《北京协和医学院》2017年博士论文 论文类型:学位论文
【摘要】:灵芝是担子菌纲多孔菌科灵芝属真菌赤芝(Ganoderma lucidum).和紫芝(Ganoderma sinense)的子实体,灵芝三萜和多糖是灵芝的两种主要药理活性组分。灵芝酸A(Ganodericacid A,GAA)是灵芝中含量最为丰富的三萜酸之一,普遍存在于灵芝属植物中。研究报道显示,GAA具有镇痛、抗氧化、肝保护和抗癌等药理活性。作为灵芝的主要活性成分,GAA单体的代谢、体内药代动力学特性和生物利用度仍鲜有报道。灵芝及其制剂在临床及日常保健中被广泛应用,常与其他处方药物同时使用,其是否会和其他药物发生药物相互作用仍然缺乏相关的研究。本文以灵芝酸A为研究对象,从整体动物及细胞水平探讨灵芝三萜在体内的药代动力学过程及吸收转运机制;以灵芝提取物为研究对象,考察灵芝是否存在基于外排转运体和细胞色素P450(CYP450)酶的潜在药物相互作用,为灵芝的合理应用和新药研发提供依据。本论文完成的研究工作主要有以下几个方面:1.GAA代谢产物及代谢途径研究采用HPLC-DAD-MS/MS技术,首次鉴定了 GAA的代谢产物,研究了其主要代谢产物的酶动力学特性。对静脉给予大鼠GAA后采集到的生物样品、以及GAA在大鼠和人肝微粒体孵育体系中的代谢产物进行鉴定,并对其主要代谢产物的酶动力学特性进行考察。从大鼠胆汁、血浆和尿液中共检测鉴定了 37种代谢物;从体外大鼠肝微粒体(RLMs)孵育体系和人肝微粒体(HLMs)孵育体系中分别鉴定了与大鼠体内相同的9和7种代谢物。研究提示GAA在人和大鼠体内的代谢途径具有相似性。GAA可以发生氧化还原羟基化的Ⅰ相代谢和葡萄糖醛酸化磺酸化的Ⅱ相代谢反应,其主要代谢位点为3、7、11、15、23位的羰基或羟基基团和12、20、28(29)位的碳原子。GAA的还原代谢产物在RLMs中的生成速率远大于在HLMs中,且均由CYP3A参与代谢。2.GAA及其代谢产物体内药代动力学研究首先建立了灵敏的用于测定大鼠血浆、胆汁、尿液和脑微透析液中GAA浓度的UFLC-MS/MS分析方法。方法学考察显示,该方法线性良好、灵敏可靠,具有低的检测限(0.25 nmol/L)和定量限(2.00 nmol/L),精密度、准确度、萃取回收率、稳定性等均能满足生物样品分析要求。用所建立的分析方法研究GAA及其主要代谢物灵芝酸C2(C1)、7β,11,15-trihydroxy-3,23-dioxo-lanost-8-en-26-oic acid(C2)、11,15-dihydroxy-3,7,23-trioxo-lanost-8-en-26-oicacid(C3)和灵芝酸B(C4)在大鼠体内药代动力学特性。代谢物浓度以GAA标准曲线进行定量。静脉给予GAA(20mg/kg)后,原型药在体内逐渐消除,同时生成了丰富的代谢物C1-C4。各代谢物在5 min左右均达到Cmax值,分别为2.61、0.17、2.84和0.51 μmol/L,且C1、C2、C4在3-6h左右有明显的重吸收峰。GAA 及其代谢物 C1-C4 的 t1/2 分别为 2.40、13.08、12.35、2.16 和 2.79h,并主要从胆汁中排出,0-24 h在胆汁中的累积排泄率分别为给药剂量的21.37%、18.02%、2.22%、2.33%和0.70%。而GAA在尿液中的累积排泄率仅为2.59%,代谢物C1-C4的累积排泄率之和为0.076%。口服给药(20mg/kg)后,GAA原型药和四个代谢物C1-C4在10-40 min出现第一个血药浓度峰值,且在6-8 h左右均出现重吸收峰。GAA的口服生物利用度为8.68%。静脉给药方式下,GAA可快速通过血脑屏障(Tmax,0.25 h)进入脑组织,其血脑屏障透过率为2.96%,在脑透析液中未检测到其代谢物C1-C4。3.GAA肠道吸收转运机制研究采用Caco-2细胞模型,以UFLC-MS/MS分析方法首次研究了 GAA的肠吸收转运机制。结果表明,GAA在不同浓度(25、50、100 μg/mL)下从肠腔侧(AP)到基底侧(BL)和从BL侧到AP侧的通透量随浓度和时间的增加而相应增加,表观渗透系数PappA→B为(4.30-4.99)×10-7cm/s,Papp B→A为(33.52-37.77)×10-7cm/s,外排率为 6.72-8.79。在 P-糖蛋白(P-gp)抑制剂维拉帕米,多药耐药蛋白(MRP)抑制剂MK571和乳腺癌耐药蛋白(BCRP)抑制剂潘生丁的干预下,GAA的PappA→B值分别升高至5.79×10-7、12.14×10-7和4.62×10-7cm/s,PappB→A值分别降低至 30.17×10-7、23.55×10-7和 25.57×10-7cm/s,外排显著降低。提示P-gp、MRP和BCRP均参与GAA的外排转运,这可能是GAA 口服生物利用度低的主要原因。4.基于外排转运体的灵芝潜在药物相互作用研究通过Caco-2细胞摄取和跨膜转运实验,研究灵芝(Ganoderma lucidum)提取物及单体成分GAA对外排转运体P-gp、MRP和BCRP功能的影响。细胞摄取实验结果显示,灵芝总提物(GLE)和灵芝三萜提取物(GLT)在浓度为100 μg/mL时,使P-gp底物罗丹明123(Rho)和MRP底物钙黄绿素(Cal)的摄取量显著增加,对P-gp和MRP功能表现出抑制作用;使BCRP的底物Hoechst 33342(Hoe)的摄取量显著降低,对BCRP功能表现出诱导作用。灵芝多糖提取物(GLP)在实验浓度下则对P-gp和MRP功能无显著影响,在浓度为100 μg/mL时对BCRP表现出诱导作用。GAA在实验浓度下对P-gp、MRP和BCRP功能均无显著影响。Caco-2细胞转运模型实验中,用不同浓度GLE和GLT干预Rho的跨膜转运时,Rho从AP到BL的通透量和Papp a→b值均显著增加,从BL到AP的通透量和PappB→A值均显著降低,且表现出剂量依赖性,提示GLE和GLT可以抑制P-gp的外排作用。用不同浓度GLE和GLT干预Cal的外排时,Cal在AP侧的通透量表现出不同程度的降低,在Caco-2细胞单层膜中的累积量表现出不同程度的增加,提示GLE和GLT可以抑制MRP的外排作用。灵芝三萜是灵芝发挥外排转运体抑制作用的主要活性成分。提示灵芝在与外排转运体底物药物合并使用时,可能存在药物相互作用风险。5.基于CYP450酶的灵芝潜在药物相互作用研究选择临床常用药物非那西丁、奥美拉唑、右美沙芬、睾酮、甲苯磺丁脲、氯唑沙宗分别作为CYP1A2、CYP2C19、CYP2D6、CYP3A4、CYP2C9 和 CYP2E1 的探针底物,结合 UFLC-MS/MS 技术对底物代谢物进行检测,以Cocktail探针底物肝微粒体代谢反应体外评价方法,对灵芝提取物和其主要成分GAA的CYP450酶抑制活性进行研究。结果显示,在HLMs中,GLE对CYP2C19、2D6、3A4和2C9表现出微弱的抑制作用,IC50值分别为131.2、164.4、150.5和142.2 μg/mL。GLT的抑制作用略强于GLE,IC50值分别为102.5、116.1、136.4和82.2μg/mL。GLP对6种CYP450酶抑制作用均不明显。在RLMs中,GLT对CYP2C9表现出微弱的抑制作用,IC50值为163.1μg/mL,而对其他酶活性无影响;GLE和GLP对6种CYP450酶均不产生抑制作用。单体成分GAA在1-50 μmol/L的浓度范围内对HLMs和RLMs中的CYP450酶均无抑制作用。
[Abstract]:Ganoderma lucidum is basidiomycetes Polyporaceae fungi of the genus Ganoderma lucidum Ganoderma lucidum (Ganoderma lucidum). (Ganoderma sinense) and Ganoderma fruiting bodies of Ganoderma lucidum three terpene and polysaccharide are two main pharmacological active components of Ganoderma lucidum. Ganoderic acid A (Ganodericacid A GAA) is one of three triterpene acids in Ganoderma lucidum rich most the content exists in the ganoderma genus. Research reports show that GAA has analgesic, antioxidant, hepatoprotective and anticancer activity of Ganoderma lucidum. As the main component, the metabolism of GAA monomer, pharmacokinetic characteristics and bioavailability of Ganoderma lucidum and its preparation is still rarely reported. It is widely applied in clinical and daily health care, often used in conjunction with other prescription drugs, it will occur and other drug drug interactions is still a lack of relevant research. In this paper, ganoderic acid A as the research object, from the whole animal and cellular level of three terpene in Ganoderma lucidum The in vivo pharmacokinetics and mechanism of absorption and transport; the Ganoderma lucidum extract of Ganoderma lucidum as the research object, the existence of efflux transporter and cytochrome P450 (CYP450) based on the interaction of the enzyme for potential drugs, the rational use of Ganoderma lucidum and new drug development. Provide the basis for the research in this thesis mainly includes the following aspects: study metabolites and metabolic pathways of 1.GAA using HPLC-DAD-MS/MS technology, first identified metabolites of GAA, enzyme kinetics of its main metabolites. The intravenous administration of rat GAA after collected biological samples, and GAA in rat and human liver microsomes incubated with metabolites in the system were identified, and the enzyme dynamic characteristics of the main metabolites were investigated. From rat bile, plasma and urine were detected and identified 37 metabolites from rat liver microsomes in vitro; (RLMs). The education system (HLMs) and human liver microsomes incubation system were identified with the rats the same 9 and 7 metabolites. Studies suggest that GAA metabolic pathways in rat and human body is similar to that of.GAA can undergo redox hydroxylation phase I metabolism and glucuronidation of sulfonated phase II metabolism the main metabolic reaction sites for 3,7,11,15,23 bits of the carbonyl or hydroxyl groups and 12,20,28 (29) generation rate reduction metabolites a carbon atom of.GAA in RLMs is much larger than that in HLMs, and CYP3A is involved in the metabolism of.2.GAA and its metabolic products in vitro in pharmacokinetic studies was first established for the determination of high sensitive the concentration of GAA in plasma, bile, urine and brain Microdialysate UFLC-MS/MS analysis method. The influences of display method, this method has good linearity, sensitivity and reliability, has a low detection limit (0.25 nmol/L) and limit of quantification (2 nmol/L) , precision, accuracy, recovery, stability can meet the requirements of biological sample analysis. By analyzing the research of GAA and its metabolites ganoderic acid C2 (C1), 7 beta, 11,15-trihydroxy-3,23-dioxo-lanost-8-en-26-oic acid (C2), 11,15-dihydroxy-3,7,23-trioxo-lanost-8-en-26-oicacid (C3) and ganoderic acid B (C4) in vivo in rats pharmacokinetic characteristics. Metabolite concentrations were quantified using the GAA standard curve. Intravenous GAA (20mg/kg), the prototype drug gradually eliminate the in vivo metabolite of C1-C4. rich metabolite reached Cmax value at about 5 min is obtained at the same time, respectively 2.61,0.17,2.84 and 0.51 mol/L, and C1, C2, C4 have obvious weight the absorption peak of.GAA and its metabolite C1-C4 t1/2 were 2.40,13.08,12.35,2.16 and 2.79h in 3-6h, and mainly from the bile discharge, 0-24 h in the bile of the cumulative excretion rate Don't let the dosage of 21.37%, 18.02%, 2.22%, 2.33% and 0.70%. and GAA cumulative excretion in the urine was only 2.59%, the cumulative excretion of metabolites C1-C4 and oral administration of 0.076%. (20mg/kg), GAA drug prototype and four metabolites C1-C4 first peak blood concentration in 10-40 min and, at about 6-8 h appeared heavy absorption peak of.GAA by the oral bioavailability is 8.68%. intravenous administration, GAA can quickly through the blood-brain barrier (Tmax, 0.25 h) into the brain tissue, the blood brain barrier permeability is 2.96%, in brain dialysate was not detected in the metabolism of C1-C4.3.GAA study on intestinal absorption mechanism using Caco-2 cell model, GAA method was studied for the first time the intestinal absorption mechanism by UFLC-MS/MS analysis. The results showed that GAA in different concentration (25,50100 g/mL) from the intestinal lumen to the basolateral side (AP) (BL) and permeability from BL side to side with the concentration of AP Increased and time and the corresponding increase in the apparent permeability coefficient PappA, B (4.30-4.99) * 10-7cm/s, Papp B, A (33.52-37.77) * 10-7cm/s, the efflux rate of 6.72-8.79. in the P- glycoprotein (P-gp) inhibitor Vera Pammy, multidrug resistance protein (MRP) inhibitor MK571 and breast cancer resistance protein (BCRP under the intervention of Pan Shengding) inhibitor, GAA PappA, B values were increased to 5.79 * 10-7,12.14 * 10-7 and 4.62 * 10-7cm/s, PappB, A values were reduced to 30.17 * 10-7,23.55 * 10-7 and 25.57 * 10-7cm/s, suggesting that P-gp efflux was significantly reduced. MRP, and BCRP were involved in GAA efflux transporters, this GAA may be the main reason of low oral bioavailability of Ganoderma lucidum.4. potential drug efflux transporter based on the interaction between the Caco-2 cell uptake and the transmembrane transport experiments of Ganoderma lucidum (Ganoderma lucidum) extracts and monomer composition of GAA efflux transporter P-gp, MRP The influence and the function of BCRP. Cell uptake results showed that Ganoderma lucidum extract (GLE) and three (GLT) of Ganoderma lucidum terpenoid extract at the concentration of 100 g/mL, the P-gp substrate 123 (Rho) and Luo Danming MRP (Cal) substrate calcein uptake increased significantly, the P-gp and MRP functions the inhibitory effect of the BCRP Hoechst 33342 substrate; (Hoe) the intake significantly decreased, the function of BCRP showed induction effect. Polysaccharide extracts of Ganoderma (GLP) at the concentration of P-gp and MRP had no significant effect on the concentration of 100 g/mL of BCRP showed the induction of.GAA in the concentration of P-gp, MRP and BCRP have no significant effect on.Caco-2 cells in model experiment, with the transmembrane transport of different concentrations of GLE and GLT intervention Rho, Rho from AP to BL and Papp a, B permeability values were significantly increased, from BL to AP and PappB, A transparent the values were significantly decreased, and the Showed dose dependent, suggesting that GLE and GLT can inhibit the activity of P-gp. With different concentrations of GLE and GLT intervention Cal efflux, Cal permeability in AP side showed different degrees of reduction, accumulation in Caco-2 cell monolayer showed different degrees of increase, in GLE and GLT can suppress the activity of MRP. The three is the main active ingredient of Ganoderma lucidum triterpenoids inhibition effect of Ganoderma lucidum play efflux transporter. In Ganoderma lucidum and efflux transporter substrates with drug use, there may be a risk of drug interactions.5. potential drug omeprazole Ganoderma CYP450 enzyme interaction of clinically used drugs acetophenetidin based on that, dextromethorphan, testosterone, tolbutamide chlorzoxazone, respectively as CYP1A2, CYP2C19, CYP2D6, CYP3A4, CYP2C9 and CYP2E1 probe substrate, combined with the technology of UFLC-MS/MS substrate metabolism into line with detection. Cocktail probe substrate liver microsomal metabolism reaction in vitro evaluation methods, CYP450 enzyme of Ganoderma lucidum extract and its main component of GAA inhibitory activity were studied. The results showed that in HLMs, GLE of CYP2C19,2D6,3A4 and 2C9 showed weak inhibition, IC50 was inhibition of 131.2164.4150.5 and 142.2 g/mL.GLT is stronger than GLE, IC50 the values were 102.5116.1136.4 and 82.2 g/mL.GLP to 6 CYP450 enzyme inhibition was not obvious. In RLMs, GLT showed a weak inhibitory effect on CYP2C9, IC50 value is 163.1 g/mL, but have no effect on other enzyme activity; GLE and GLP of 6 kinds of CYP450 enzymes was not inhibited. Monomer the component GAA in the concentration range of 1-50 mol/L CYP450 enzyme on HLMs and RLMs were not inhibited.
【学位授予单位】:北京协和医学院
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R285.5
【相似文献】
相关期刊论文 前10条
1 胡明,赖琪,蒲剑,刘一飞;美国药物相互作用计算机审查系统的发展与应用概况[J];中国医院药学杂志;2001年01期
2 ;药物相互作用(续表)[J];中国乡村医药;2001年12期
3 张芳,牛其昌;引起不良理化变化的药物相互作用(一)[J];中国临床医生;2001年03期
4 卢艳青;药物相互作用及其临床意义[J];广东微量元素科学;2002年04期
5 冯晓燕;浅谈药物相互作用[J];医学理论与实践;2004年08期
6 Carol Ukens ,周怡;研究认为应杜绝严重的药物相互作用[J];中国处方药;2004年11期
7 Kelly Dowhower Karpa;于丽;;药物相互作用带来的困扰[J];中国处方药;2006年05期
8 张玉霞;;分析药物相互作用方法的进展[J];中国水运(理论版);2007年05期
9 柯元南;;药物相互作用和用药安全[J];中华老年心脑血管病杂志;2007年09期
10 刘亚贤;;药物相互作用及其对治疗的影响浅析[J];临床药物治疗杂志;2008年04期
相关会议论文 前10条
1 戴体俊;;药物相互作用的概念和定量分析[A];第十二届全国数学药理学术大会论文集[C];2009年
2 戴体俊;;药物相互作用的概念和定量分析[A];中国药理学会第十次全国学术会议专刊[C];2009年
3 刘高峰;;中药代谢与药物相互作用[A];第四届全国药学服务与研究学术论坛论文集[C];2011年
4 吴荣荣;魏振满;;药物相互作用研究[A];中国成人医药教育论坛(2009)[C];2009年
5 郑青山;孙瑞元;;药物相互作用动力学:分析模型与电脑类比[A];海峡两岸三地药理学学术报告会论文汇编[C];2001年
6 曾苏;;代谢性药物相互作用[A];2005年浙江省合理用药与药品不良反应监测学术研讨会专题报告集[C];2005年
7 王娟;;药物相互作用[A];广东省药学会送学下乡地市药学人员继续教育学习班讲义[C];2005年
8 王益平;项青青;;氨基糖苷类抗生素对肾毒及其它药物相互作用[A];2013年浙江省医院药学学术年会会议报告与论文汇编[C];2013年
9 袁秉祥;;心血管药物相互作用与复方药品研发[A];第八届海峡两岸心血管科学研讨会论文集[C];2011年
10 袁秉祥;;基于药物相互作用理论和多因素多水平分析技术的复方药品研发[A];中国药理学会第十一次全国学术会议专刊[C];2011年
相关重要报纸文章 前10条
1 美国德克萨斯大学圣安东尼奥医学院 李俊旭;如何进行药物相互作用研究[N];医药经济报;2009年
2 本报记者 吴若琪;药物分合的科学解析[N];中国医药报;2011年
3 卫生部北京医院药剂科 刘治军;重视药物相互作用 减少药源性损害[N];中国医药报;2011年
4 刘元江;网上看药物相互作用[N];健康报;2004年
5 一文;何谓药物相互作用?[N];医药经济报;2002年
6 孟刚;老年人用药要抓主要矛盾谨防药物相互作用[N];中国消费者报;2007年
7 北京大学肿瘤医院药师 杨锐;合并用药与药物相互作用该如何平衡[N];中国医药报;2012年
8 湖南省兽药饲料监察所 肖安东 研究员;优质兽药必备的因素[N];中国畜牧兽医报;2006年
9 陆志城 石苇;部分植物及机体所需营养物质微量元素金属盐类可能存在的药物相互作用[N];医药经济报;2003年
10 陆志城 石苇;部分植物及机体所需营养物质微量元素金属盐类可能存在的药物相互作用[N];医药经济报;2003年
相关博士学位论文 前2条
1 曹方瑞;灵芝酸A药代动力学及灵芝潜在药物相互作用研究[D];北京协和医学院;2017年
2 高怡文;人CYP2C8多态性功能及CYP2C8基因依赖性药物相互作用的体外研究[D];西北大学;2010年
相关硕士学位论文 前10条
1 徐亚飞;基于抑制CYP450酶的代谢性药物—药物相互作用体外研究及实例报告[D];延边大学;2015年
2 丁林松;基于序列的蛋白质—药物相互作用预测研究[D];南京理工大学;2015年
3 毕凯;基于集成学习的药物相互作用信息抽取系统的研究与实现[D];西北农林科技大学;2016年
4 王海峰;自动化酶反应新方法建立并应用于待测化合物对CYP酶的抑制情况研究[D];华南理工大学;2015年
5 徐云婷;甜菊醇酰基葡萄糖醛酸结合物介导的药物相互作用机制研究[D];苏州大学;2016年
6 赵鹏姚;药物相互作用的网络药理学分析与预测[D];北京交通大学;2016年
7 邱婷婷;我院部分老年住院患者基于CYP450代谢的用药合理性分析及实例报告[D];广西医科大学;2016年
8 刘萍;对合理用药中药物相互作用的现状及对策研究[D];沈阳药科大学;2008年
9 曲衍清;体外预测己烯雌酚引起药物—药物相互作用的可能性[D];大连医科大学;2011年
10 徐佳;(5R)-5-羟基雷公藤内酯醇的吸收机制和与甲氨蝶呤联合用药的药物—药物相互作用研究[D];华东理工大学;2014年
,本文编号:1501277
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/1501277.html