二分频圆形压电振子骨传导听觉装置的研究
本文选题:二分频 切入点:骨传导 出处:《吉林大学》2017年博士论文
【摘要】:由于压电材料的良好性能,应用领域也在不断拓宽,而骨传导技术也越来越多的被应用在耳机、手机等听觉装置中。本文结合高等学校博士学科点专项科研基金项目“分频式压电骨传导助听装置的研究”和教育部高等学校科技创新工程重大项目培育资金项目“驱动测试控制功能一体化新型压电驱动机构研究”,利用压电材料的逆压电效应并结合骨传导原理,研制开发了二分频圆形压电振子骨传导听觉装置。论文对听觉装置的核心部分——二分频压电振动系统的振动模型进行了理论推导,并对听觉装置的整体结构以及二分频电子放大电路进行了研制,通过临床实验,验证了听觉装置的分频、放大及助听功能。论文的主要研究工作如下:1.二分频圆形压电振子骨传导听觉装置的理论研究从听力学角度研究了听觉系统的组成及感音过程,对比分析人耳各结构对声音信号的传递和处理功能,初步提出骨传导听觉装置设计思想;分析了听力损伤级别划分和不同的听力补偿手段,确定了骨传导听觉装置的设计目的。分析了压电材料的逆压电效应以及与压电驱动能力相关的性能参数,研究了不同振动模式对压电振子变形的影响以及它的谐振特性,并通过与耳蜗基底膜频响特性对比,确定了二分频圆形压电振子骨传导听觉装置的总体方案。2.二分频圆形压电振子骨传导听觉装置振动系统理论建模与仿真分析利用ANSYS软件对周边固支和中间固支两种支撑方式下的圆形压电振子进行静力学分析和模态分析,找到两种压电振子的一阶谐振频率,明确了周边固支的压电振子对高频信号敏感,中间固支的压电振子对低频信号敏感,提出采用两种支撑方式压电振子串联组成听觉装置的振动系统以拓宽其频率响应范围。用解析法建立了振动系统的数学模型,推导出其固有振型以及影响振幅大小的参数并验证了设计方案的合理性。以中间固支圆形压电振子为例,通过仿真分析明确了振子的直径、厚度以及传导柱的尺寸参数对振子输出位移和基频的影响,为听觉装置结构尺寸的设计提供了依据。3.二分频圆形压电振子骨传导听觉装置的样机制作从功能性和实用性角度出发,完成了二分频圆形压电振子骨传导听觉装置的整体结构设计,包括周边固支的高频压电振子具体尺寸及其支撑架和传导柱的结构尺寸设计、中间固支的低频压电振子的尺寸确定及其支撑柱和传导柱的结构尺寸设计,以及装置的上盖、底座、导线孔、吸声处理等其他结构的设计,最终完成了听觉装置的样机制作。通过对振动系统振动耦合问题的分析,说明了耦合对振动系统的频率响应影响较小。4.二分频圆形压电振子骨传导听觉装置分频放大电路的研制为了使高频信号被听觉装置振动系统的高频压电振子响应,而低频信号被低频压电振子响应,拓宽听觉装置的频率响应范围,提高振动系统的输出增益,需要对信号进入装置前进行分频和放大处理,因此研制了装置的分频放大电路。通过对分频基本原理和常用分频电路工作机理的分析和研究,采用集成放大芯片NE5532作为放大电路核心元件,设计了听觉装置的电子分频放大电路;利用Multisim软件对所设计的电路进行仿真实验,验证了其设计的合理性;搭建了电路并对其进行实验测试,验证了电路的分频点为2000Hz,放大倍数可达20倍,频率响应范围可以从30Hz到30kHz,分频和放大功能满足本装置的使用要求。5.二分频圆形压电振子骨传导听觉装置的实验研究通过对当前常用助听设备听力补偿效果测试系统的分析和研究,从二分频圆形压电振子骨传导听觉装置的设计目的出发,结合现有实验条件提出了适合听觉装置和自身实验条件的实验方法,制定了实验用的测试词表,在三种不同声场下对有不同程度听力损伤的患者进行了听觉装置听力补偿实验测试,测试内容包括听觉察知能力测试(能否听到声音)、听觉分辨能力测试(能否分出听到的是音乐还是人的语音)以及初步的听觉识别能力测试(对短句的识别正确率高低测试),对实验结果进行分析和对比,验证了听觉装置具有较好的听力补偿能力。论文对二分频圆形压电振子骨传导听觉装置的研究过程涉及了声学、振动力学和电学等方面的相关知识,通过对听觉装置和外置分频放大电路的研制,对压电式骨传导助听装置的实际应用提供了研究基础,对提高骨传导听觉装置的频率响应范围和输出增益有很好的借鉴意义。
[Abstract]:Because of the good performance of piezoelectric materials, applications are constantly expanding, and the bone conduction technology has been applied widely in mobile phone headset, such as hearing device. In this paper the doctoral program of higher education scientific research fund project "the frequency of piezoelectric bone conduction hearing aid device research" and the Ministry of Education Science and technology innovation the major engineering project to cultivate fund project "test drive control function integration model of piezoelectric driving mechanism research", using the inverse piezoelectric effect combined with bone conduction principle of piezoelectric materials, developed two frequency circular piezoelectric bone conduction hearing device is developed. The hearing device core part, two frequency piezoelectric vibration model the vibration system is analyzed theoretically, and the overall structure of the hearing device and two frequency electronic amplifier was developed. Through clinical trials, to verify the hearing The device frequency, amplification and hearing function. The main research work of this paper are as follows: 1. theoretical study two frequency circular piezoelectric bone conduction hearing device of composition and process of sensorineural hearing system from the angle of audiology, comparative analysis of the structure of the human ear sound signal transmission and processing functions, of bone conduction hearing device design; analysis of hearing impairment and hearing compensation levels of different means of determining the design purpose of bone conduction hearing device. Analysis of piezoelectric materials inverse piezoelectric effect and performance parameters associated with the piezoelectric driving ability, to study the influence of piezoelectric vibrator deformation and resonant characteristics of it the different modes of vibration, and by comparison with the frequency response characteristics of basilar membrane, the overall plan of the two frequency circular piezoelectric bone conduction hearing device.2. two frequency piezodisc bone The hearing device vibration system theoretical modeling and simulation analysis of clamped clamped support and intermediate two under the mode of circular piezoelectric vibrator static analysis and modal analysis using ANSYS software, find a resonance frequency of two kinds of piezoelectric vibrator, the clamped piezoelectric vibrator is sensitive to the high frequency signal, the middle clamped piezoelectric oscillator is sensitive to low frequency signal, using two different support types of piezoelectric vibrator series vibration system composed of a hearing device to broaden the range of frequency response. The mathematical model of the vibration system is established by analytic method, push the natural modes and the influence of parameters derived amplitude and to verify the rationality of the design scheme. In the middle of the clamped circular piezoelectric vibrator as an example, through the simulation analysis of clear oscillator diameter, effect of thickness and size parameters of conduction column on vibrator output displacement and frequency, Provide the basis for the prototype.3. two frequency piezodisc bone conduction hearing device production starting from functional and practical angle design for hearing device structure, completed the overall structure of the design frequency of two circular piezoelectric bone conduction hearing device, including high frequency clamped piezoelectric vibrator specific size the size and structure of the support frame and conduction column design, intermediate frequency clamped piezoelectric vibrator to determine the size and structure of the size of the columns and column transmission design, and the device on the cover, a wire hole, and other sound-absorbing structure design, finally completed the prototype of the hearing device. Through the analysis of the vibration coupling vibration system, illustrates the impact of the smaller.4. two frequency piezodisc bone conduction hearing device frequency amplifier is developed in order to make the high frequency coupling response to frequency The signal is high frequency hearing device vibration system of piezoelectric vibrator response, while the low frequency signal is low frequency response of piezoelectric vibrator, broaden the hearing device frequency response range, improve the output gain of the vibration system, the need for frequency and amplification of signal processing into the device, so the research of the device. Through the analysis of frequency amplifying circuit and the research on the basic principle and common frequency divider circuit working mechanism, using integrated amplifying chip NE5532 as the core component of amplifier circuit, design the electronic frequency hearing device amplifying circuit; simulation experiment of the designed circuit by using Multisim software to verify the rationality of the design; build the circuit and experimental test of the. To verify the circuit frequency for 2000Hz, up to 20 times magnification, the frequency response can range from 30Hz to 30kHz, the frequency and amplification using this device to meet Experimental study on the requirements of.5. two frequency piezodisc bone conduction hearing device through the analysis and study of the current commonly used test hearing aid effect of hearing compensation system, starting from the design frequency of two circular piezoelectric bone conduction hearing device, combined with the existing experimental conditions test method was proposed for hearing device and its experimental conditions the developed experimental test list in three different field to have varying degrees of hearing loss were hearing hearing compensation test device, test content including auditory perception test (can hear sounds), auditory discrimination ability test (whether from hear music or speech is people) and auditory recognition ability test (preliminary identification of the correct phrase rate test), analysis and comparison of the experimental results, verify the hearing device has better Hearing compensation ability. The research process of the two division of circular piezoelectric bone conduction hearing device involves the knowledge of acoustics, vibration mechanics and electrics, developed through the amplifying circuit of the device and an external auditory frequency, this study provides a basis for practical application of piezoelectric bone conduction hearing aid, to improve bone conduction hearing device frequency response range and output gain has a very good reference.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R318
【相似文献】
相关期刊论文 前10条
1 任树初;压电振子的多维耦合振动(Ⅱ)——复合压电振子[J];声学学报;1983年05期
2 任树初;压电振子的多维耦合振动(Ⅰ)——纯压电振子[J];声学学报;1983年03期
3 王矜奉,苗庆海;压电振子参数的电纳测量方法[J];声学学报;1988年06期
4 丁少虎;朱霆;贺西平;李军;;圆形复合压电振子弯曲振动的分析[J];纺织高校基础科学学报;2007年02期
5 姚守拙,周铁安;石英压电振子在液体中的某些振荡特性研究[J];科学通报;1985年15期
6 王矜奉;压电振子参数与其电纳值关系的研究[J];声学技术;1986年01期
7 王晓光;脉冲法测压电振子切变模机电耦合系数k_(15)[J];无机材料学报;1988年01期
8 吉川隆,刘守华;一种使用多层压电振子的低频筒形声源[J];声学技术;1993年01期
9 王清池;多维耦合振动复合压电振子的设计[J];海洋与湖沼;1999年05期
10 杨东平,杨志刚,杨国欣,程光明;双弯曲驻波压电振子的振动及其相位关系研究[J];压电与声光;2000年03期
相关博士学位论文 前6条
1 陈艳辉;二分频圆形压电振子骨传导听觉装置的研究[D];吉林大学;2017年
2 苏江;压电振子在直线式振动送料器上的应用研究[D];吉林大学;2014年
3 田晓超;圆环形功率型膜片式压电振子特性分析及应用技术研究[D];吉林大学;2015年
4 沈燕虎;基于垂直驱动的压电振动送料器结构设计分析与试验研究[D];吉林大学;2014年
5 朱幼君;管道空腔流声耦合振荡及压电振子流动控制技术的研究[D];上海交通大学;2010年
6 郭抗;平板形二自由度压电马达的理论与试验研究[D];吉林大学;2011年
相关硕士学位论文 前10条
1 王亚峰;压电馈能式减振器结构设计及压电振子实验研究[D];燕山大学;2015年
2 叶磊;基于谐振驱动的压电微喷装置的研究[D];哈尔滨工业大学;2015年
3 杨微;悬臂型压电发电装置固有频率与能量输出特性的研究[D];哈尔滨工业大学;2015年
4 李洋;磁励旋转式圆形压电振子发电机的设计与试验研究[D];浙江师范大学;2015年
5 邢明星;压电能量收集器的研究[D];黑龙江大学;2015年
6 郭和平;悬置式惯性压电共振隔膜泵的研究[D];兰州交通大学;2015年
7 赵帅;基于压电发电的环境信息监测节点自取能技术研究[D];太原理工大学;2016年
8 刘月行;胎压监测发电装置用压电振子优化设计与实验研究[D];吉林大学;2016年
9 史萌博;基于纵弯模态的直线型超声马达的仿真设计[D];华中科技大学;2014年
10 郑颖;压电振动能量回收接口电路的设计与实验[D];燕山大学;2016年
,本文编号:1724438
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/1724438.html