当前位置:主页 > 硕博论文 > 医学博士论文 >

人参皂苷Rg1调控FoxO3a相关信号通路抑制人脐血源基质细胞氧化应激损伤的研究

发布时间:2018-06-22 10:45

  本文选题:人参皂苷Rg1 + 人脐血源基质细胞 ; 参考:《重庆医科大学》2017年博士论文


【摘要】:造血微环境(hematopoietic inductive microenvironment,HIM)是支持和调节造血干细胞(haemopoietic stem cells,HSCs)生长发育的内环境,其结构和功能的完整是维系正常造血功能的重要因素。基质细胞作为HIM的核心组分,不仅通过形成HSCs生长发育的“龛”、分泌造血因子和细胞外基质等方式支持和调控HSCs自我更新与分化,还与多种血液系统疾病的发生、发展和预后密切相关。本课题组长期从事人脐血源基质细胞(human umbilical cord blood-derived stromal cells,h UCBDSCs)及脐血造血微环境的研究。我们的前期体外研究证实h UCBDSCs具有造血基质细胞的基本生物学特征,能有效支持脐血CD34+细胞数量扩增;动物实验也表明,h UCBDSCs与造血细胞联合移植于辐照后裸鼠体内具有促进造血重建、修复受损微环境和减轻移植物抗宿主病(GVHD,graft-versus-host disease)的多重效应。然而随着研究的深入,我们发现h UCBDSCs存在移植后存活状况差和植入效率较低等问题,分析主要原因可能是在体外培养和体内输注过程中会面临营养缺乏、炎症反应和氧化应激等多种不良因素刺激。这些因素导致胞内自由基和活性氧(reactive oxygen species,ROS)含量增加,细胞结构破坏和功能失调,进而造成细胞衰老、死亡或凋亡。线粒体是细胞内ROS的主要来源,也是最先被攻击的细胞器。线粒体ROS(mitochondrial ROS,mt ROS)的稳态调节是维系线粒体和细胞正常功能的关键所在。线粒体氧化应激,即mt ROS的产生与抗氧化防御之间的不平衡,将导致线粒体功能障碍及一系列相关疾病。为确保h UCBDSCs活力和移植疗效,研究如何提高细胞内源性抗氧化保护功能和维持mt ROS稳态调节的有效途径具有重要的理论价值和应用前景意义。人参是中医临床“补气要药”,已有数千年的临床用药历史。现代医学研究认为,人参皂苷是人参中主要的药理学活性成分,有多达几十种皂苷,人参皂苷Rg1(Ginsenoside Rg1,G-Rg1)是其中最重要的单体皂苷成分之一。本课题组和其他学者的研究证实,人参皂苷Rg1在抗肿瘤、抗炎症、抗衰老、抗糖尿病、抗神经原退化和促干/祖细胞增殖等方面有广泛药理学作用。近年来研究还发现,人参皂苷Rg1具有拮抗氧化致衰剂对多种器官和细胞的氧化损伤与促细胞凋亡作用,提示人参皂苷Rg1是人参中重要的抗氧化皂苷。课题组既往研究证明,人参皂苷Rg1不仅能促进骨髓基质细胞(bone marrow stromal cells,BMSCs)增殖分化与造血生长因子分泌,还能通过增强其在D-半乳糖诱导的应激条件下的抗氧化和抗炎能力以延缓细胞衰老。然而,人参皂苷Rg1是否对于氧化应激诱导的h UCBDSCs损伤与凋亡发挥一定的保护作用以及可能的分子机制尚未见相关报道。目的:在本研究中,我们体外分离、培养和扩增h UCBDSCs,并采用叔丁基过氧化氢(tert-butyl hydroperoxide,t-BHP)损伤h UCBDSCs构建氧化应激损伤细胞模型,研究人参皂苷Rg1拮抗h UCBDSCs氧化损伤、促进细胞存活、抑制凋亡以及维持线粒体ROS稳态的重要作用,深入探索转录调控因子叉头框蛋白O3a(Fokhead box O3a,Fox O3a)介导的相关信号通路在人参皂苷Rg1发挥这些效应中的作用。旨在为阐释人参皂苷Rg1抗氧化效应的现代分子生物学机制提供新的理论依据;为提高h UCBDSCs临床移植治疗效果提供新的辅助手段。方法:1.体外分离、培养和扩增h UCBDSCs,采用t-BHP处理细胞构建氧化应激损伤体外模型。分别以不同浓度人参皂苷Rg1处理损伤后的h UCBDSCs,CCK-8法检测人参皂苷Rg1对h UCBDSCs细胞活力、细胞增殖的影响,在倒置相差显微镜下观察成纤维细胞集落形成单位(colony-forming unit of fibroblast,CFU-F)的形成。以试剂盒分别检测氧化应激相关指标,包括丙二醛(malondialdehyde,MDA)含量,乳酸脱氢酶(lactate dehydrogenase,LDH)和超氧化物歧化酶(superoxide dismutase,SOD)的活力。2.采用不同浓度人参皂苷Rg1分别处理t-BHP诱导的h UCBDSCs,流式细胞术检测细胞凋亡率,阐明人参皂苷Rg1对细胞凋亡的影响。Western blot法检测人参皂苷Rg1对t-BHP诱导的h UCBDSCs凋亡相关蛋白(Caspase-3、Bim、Bax和Bcl-2)表达水平的影响。Western blot法检测Akt-Fox O3a信号通路在人参皂苷Rg1下调Bim蛋白表达水平中的作用,Western blot法检测人参皂苷Rg1对Fox O3a在h UCBDSCs中胞核/质转位的调节作用。3.采用不同浓度人参皂苷Rg1处理t-BHP诱导的h UCBDSCs,激光扫描共聚焦显微镜(laser scanning confocal microscope,LSCM)分别检测人参皂苷Rg1对总ROS和mt ROS生成的影响,利用LSCM检测人参皂苷Rg1对t-BHP诱导的h UCBDSCs线粒体膜电位(MMP,mitochondrial membrane potential)的影响。以试剂盒检测人参皂苷Rg1对锰超氧化物岐化酶(Mn-SOD)和过氧化氢酶(Catalase)活力的影响。采用CCK-8法、LSCM和相应试剂盒检测等方法明确Sirt1在人参皂苷Rg1阻抑线粒体氧化损伤中的作用,Western blot法检测AMPK-Sirt1信号通路在人参皂苷Rg1上调Fox O3a去乙酰化水平中的作用。结果:1.成功构建t-BHP诱导h UCBDSCs的氧化应激损伤体外模型研究发现,不同浓度t-BHP损伤h UCBDSCs后,细胞存活率随t-BHP浓度的增加而逐渐降低。在t-BHP浓度(80μM)处理细胞6 h时,细胞存活率降至(52±3.10)%,即IC50约为80μM。根据上述实验结果,以80μM剂量t-BHP处理细胞6 h的方法构建t-BHP诱导h UCBDSCs的氧化应激损伤体外模型。2.人参皂苷Rg1抑制t-BHP诱导的h UCBDSCs损伤和凋亡(1)在本研究涉及的浓度范围内,人参皂苷Rg1能浓度依赖的抑制t-BHP诱导h UCBDSCs的活力下降,当人参皂苷Rg1浓度为0.1、1、10和50μM时作用最为显著。人参皂苷Rg1(50μM)还对t-BHP诱导的细胞增殖下降和CFU-F形成减少具有明显的恢复作用,且对于正常h UCBDSCs也具有一定促增殖作用。(2)t-BHP损伤h UCBDSCs后MDA含量和LDH酶活性显著上升,而SOD酶活性明显降低。不同浓度(1、10和50μM)人参皂苷Rg1处理均能显著降低MDA和LDH水平;当浓度为10μM和50μM时人参皂苷Rg1还能明显提高SOD的酶活性。(3)t-BHP损伤h UCBDSCs后凋亡率较正常组显著增加,而不同浓度(1、10和50μM)人参皂苷Rg1处理均能够有效抑制t-BHP诱导的h UCBDSCs凋亡。人参皂苷Rg1(50μM)还能显著抑制促凋亡蛋白酶Caspase-3的活化、降低促凋亡蛋白Bim和Bax的表达及提高抑凋亡蛋白Bcl-2的表达。3.Akt-Fox O3a-Bim信号通路在人参皂苷Rg1抑制凋亡中的作用人参皂苷Rg1(50μM)能激活Akt和Fox O3a磷酸化,促进Fox O3a由胞核向胞质转位,这一改变抑制了Fox O3a对下游凋亡诱导基因Bim的表达调控,进而下调了促凋亡蛋白Bim和Bax的表达,并上调了抑凋亡蛋白Bcl-2的表达。而人参皂苷Rg1作用能被PI3K抑制剂LY29004所抑制,提示Akt-Fox O3-Bim信号通路在人参皂苷Rg1阻抑t-BHP诱导h UCBDSCs的凋亡中发挥重要作用。4.人参皂苷Rg1减轻t-BHP诱导的线粒体氧化损伤(1)激光扫描共聚焦显微镜检测发现,t-BHP损伤h UCBDSCs后DCFH-DA荧光强度较正常对照组明显升高,提示胞内总ROS水平上升。不同浓度(1、10和50μM)人参皂苷Rg1处理细胞后总ROS水平随着人参皂苷Rg1浓度增加而逐渐下降,表明人参皂苷Rg1能抑制t-BHP诱导的胞内活性氧水平提升。(2)激光扫描共聚焦显微镜检测发现,t-BHP损伤h UCBDSCs后Mito SOX Red红色荧光变强,线粒体O2·-水平明显升高。人参皂苷Rg1浓度依赖的抑制t-BHP诱导的线粒体O2·-增加,当其浓度为10μM和50μM时,O2·-水平显著低于t-BHP单处理组,提示人参皂苷Rg1具有降低线粒体活性氧水平的作用。(3)激光扫描共聚焦显微镜观察JC-1探针标记的h UCBDSCs,并采用红/绿色荧光强度的比值代表线粒体膜电位(Δψm)。结果表明,与正常对照组比较,t-BHP处理细胞后Δψm明显降低。不同浓度(1、10和50μM)人参皂苷Rg1处理细胞后Δψm随人参皂苷Rg1浓度增加而逐渐增加,提示人参皂苷Rg1能抑制t-BHP诱导的h UCBDSCs线粒体膜电位丢失。(4)t-BHP损伤h UCBDSCs后导致Mn-SOD和Catalase的酶活力下降,而人参皂苷Rg1处理能浓度依赖的提高这两种线粒体抗氧化酶的活力。当人参皂苷Rg1浓度为10μM和50μM时,Mn-SOD酶活力水平显著高于t-BHP单处理组;人参皂苷Rg1浓度为1、10和50μM时,Catalase酶活力较t-BHP单处理组有显著提高。结果提示人参皂苷Rg1可通过提高Mn-SOD和Catalase酶活力发挥线粒体抗氧化作用。5.AMPK-Sirt1-Fox O3a信号通路在人参皂苷Rg1调控线粒体活性氧水平中的作用(1)人参皂苷Rg1(50μM)能显著提高t-BHP诱导的h UCBDSCs细胞Sirt1的表达水平,且对于正常细胞Sirt1的表达也有促进作用。使用Sirt1的si RNA干扰后,人参皂苷Rg1对线粒体O2·-生成的抑制作用被明显减弱,Mn-SOD和Catalase酶活性降低,细胞活力也随之下降,提示Sirt1活化对于人参皂苷Rg1发挥线粒体抗氧化作用是必要的。(2)t-BHP损伤h UCBDSCs后磷酸化的AMPK、Sirt1表达及去乙酰化的Fox O3a表达水平均明显降低。与t-BHP处理组比较,人参皂苷Rg1(50μM)能显著促进AMPK磷酸化激活和上调Sirt1表达水平,进而提高Fox O3a去乙酰化水平。分别利用AMPK si RNA和Sirt1 si RNA干扰处理后,人参皂苷Rg1这一系列效应被抑制,表明人参皂苷Rg1能够通过激活AMPK-Sirt1信号通路促进Fox O3a去乙酰化,进而上调Fox O3a介导的Mn-SOD和Catalase两种酶的表达,发挥线粒体活性氧清除作用。结论:1.人参皂甙Rg1能够促进t-BHP诱导h UCBDSCs的存活、提高增殖能力,并通过调控Akt-Fox O3a-Bim信号通路在抑制细胞凋亡过程中发挥重要作用。2.人参皂苷Rg1通过清除过多mt ROS来保护h UCBDSCs免受t-BHP诱导的线粒体氧化损伤,而这一效应主要受到AMPK-Sirt1-Fox O3a信号通路的调控。
[Abstract]:Hematopoietic inductive microenvironment (HIM) is an internal environment that supports and regulates the growth and development of haemopoietic stem cells (HSCs). Its structure and function are an important factor in maintaining normal hematopoiesis. As the core component of HIM, the matrix cells not only form a "niche" for HSCs growth and development. "The secretion of hematopoietic factors and extracellular matrix supports and regulates the self renewal and differentiation of HSCs, and is closely related to the occurrence, development and prognosis of a variety of blood system diseases. The research group has long been engaged in the study of human umbilical cord blood stromal cells (human umbilical cord blood-derived stromal cells, h UCBDSCs) and umbilical blood hematopoietic microenvironment. Our previous in vitro studies have confirmed that h UCBDSCs has the basic biological characteristics of hematopoietic stromal cells and can effectively support the number amplification of CD34+ cells in umbilical cord blood. In animal experiments, the combined transplantation of H UCBDSCs with hematopoietic cells in irradiated nude mice can promote hematopoietic reconstitution, repair the damaged microenvironment and alleviate graft-versus-host disease (GVH). The multiple effects of D, graft-versus-host disease). However, with the further study, we found that h UCBDSCs has poor survival and low implantation efficiency. The main reason for the analysis may be that many adverse factors such as nutritional deficiency, inflammatory reaction and oxidative stress may be stimulated in the process of in vitro culture and in vivo infusion. These factors lead to increased intracellular free radicals and reactive oxygen species (reactive oxygen species, ROS), cell structure destruction and dysfunction, resulting in cell senescence, death or apoptosis. Mitochondria are the main source of ROS in cells, and also the first organelles to be attacked first. The steady-state regulation of mitochondrial ROS (mitochondrial ROS, MT ROS) is maintained. Mitochondrial and cell normal function key. Mitochondrial oxidative stress, that is, the imbalance between MT ROS production and antioxidant defense, will lead to mitochondrial dysfunction and a series of related diseases. In order to ensure h UCBDSCs vitality and transplantation effect, how to improve cellular endogenous antioxidant protection function and maintain MT ROS homeostasis regulation The effective way has important theoretical value and application prospect. Ginseng is a clinical medicine for replenishing qi in Chinese medicine. It has a history of thousands of years of clinical medication. Modern medical research holds that ginsenoside is the main pharmacological active component of ginseng, with as many as dozens of saponins and ginsenoside Rg1 (Ginsenoside Rg1, G-Rg1) is the heaviest of them. The research group and other scholars have confirmed that ginsenoside Rg1 has extensive pharmacological effects on anti-tumor, anti-inflammatory, anti aging, antidiabetic, neurogenic degradation and stem / progenitor cell proliferation. In recent years, the research also found that ginsenoside Rg1 has the antagonist to a variety of organs and the antagonist of antioxidation. The effects of oxidative damage and apoptosis promoting cell apoptosis suggest that ginsenoside Rg1 is an important antioxidant saponins in ginseng. Previous studies have shown that ginsenoside Rg1 not only promotes the proliferation and differentiation of bone marrow stromal cells (bone marrow stromal cells, BMSCs) and hematopoiesis, but also enhances its induction in D- galactose. Anti oxidative and anti-inflammatory ability under stress can delay cell senescence. However, there is no report on whether ginsenoside Rg1 has protective effect on H UCBDSCs injury induced by oxidative stress and possible molecular mechanism. Objective: in this study, we isolated, cultured and amplified h UCBDSCs in this study, and used tert. Tert-butyl hydroperoxide (t-BHP) damage h UCBDSCs to construct oxidative stress damage cell model, and to study the important role of ginsenoside Rg1 to antagonize the oxidative damage of H UCBDSCs, promote cell survival, inhibit apoptosis and maintain the mitochondrial ROS homeostasis, and explore the transcriptional regulatory factor fork head frame protein O3a (Fokhead box). A) the mediated signaling pathway plays the role of ginsenoside Rg1 in these effects. The purpose is to provide a new theoretical basis for the interpretation of the modern molecular biological mechanism of the antioxidant effect of ginsenoside Rg1, and to provide a new auxiliary means for improving the therapeutic effect of H UCBDSCs in clinical transplantation. Method: 1. in vitro isolation, culture and amplification of H UCBDSCs, and t -BHP treated cells to construct an in vitro model of oxidative stress injury. H UCBDSCs after injury was treated with different concentrations of ginsenoside Rg1. CCK-8 method was used to detect the activity of ginsenoside Rg1 on H UCBDSCs cells and the effect of cell proliferation. The colony forming unit of fibroblasts was observed under the inverted phase contrast microscope (colony-forming unit of fibroblast). Detection of oxidative stress related indicators, including malondialdehyde (MDA), lactic dehydrogenase (lactate dehydrogenase, LDH), and superoxide dismutase (superoxide dismutase, SOD) activity.2. using different concentrations of ginsenoside Rg1 to treat t-BHP h induction, flow cytometry The effect of ginsenoside Rg1 on the apoptosis, the effect of ginsenoside Rg1 on the expression level of H UCBDSCs apoptosis related protein (Caspase-3, Bim, Bax and Bcl-2) induced by t-BHP was detected by.Western blot method. N blot method was used to detect the effect of ginsenoside Rg1 on the cytoplasmic translocation of Fox O3a in H UCBDSCs.3. using different concentrations of ginsenoside Rg1 processing t-BHP induced H UCBDSCs. The effect of ginsenoside Rg1 on the mitochondrial membrane potential of H UCBDSCs (MMP, mitochondrial membrane potential) induced by t-BHP. The effect of ginsenoside Rg1 on the activity of manganese superoxide dismutase (Mn-SOD) and catalase (Catalase) was detected by a kit. The role of glycoside Rg1 in inhibition of mitochondrial oxidative damage, Western blot method was used to detect the role of AMPK-Sirt1 signaling pathway in the up-regulation of Fox O3a deacetylation level by ginsenoside Rg1. Results: 1. a successful construction of an in vitro model of oxidative stress injury induced by t-BHP to induce h UCBDSCs was studied. The cell survival rate was reduced to (52 + 3.10)% when the concentration of t-BHP concentration (80 u M) was 6 h, that is, the IC50 was about 80 mu M.. According to the experimental results, the method of t-BHP treatment of 6 h with 80 M dose t-BHP was used to construct the t-BHP induced oxidative stress injury model.2. ginseng saponins Injury and apoptosis (1) in the concentration range involved in this study, ginsenoside Rg1 can decrease the activity of H UCBDSCs induced by the concentration dependent inhibitory t-BHP. When the concentration of ginsenoside Rg1 is 0.1,1,10 and 50 mu M, the effect is most significant. The ginsenoside Rg1 (50 u M) also has a significant recovery on the decrease of cell proliferation and the decrease of CFU-F formation induced by t-BHP. Use, and also have a certain proliferation effect on normal h UCBDSCs. (2) after t-BHP damage to h UCBDSCs, MDA content and LDH enzyme activity increased significantly, while SOD enzyme activity decreased significantly. The Rg1 treatment of different concentrations (1,10 and 50 mu M) could significantly reduce MDA and levels. (3) after t-BHP damage h UCBDSCs, the apoptosis rate was significantly higher than that of the normal group, while the different concentrations (1,10 and 50 mu M) could effectively inhibit the UCBDSCs apoptosis induced by t-BHP. Ginsenoside Rg1 (50 mu M) could significantly inhibit the activation of apoptotic protease Caspase-3, and reduce the expression of apoptotic protein and inhibit the expression and inhibition of H. The expression of apoptotic protein Bcl-2.3.Akt-Fox O3a-Bim signaling pathway in ginsenoside Rg1 inhibition of apoptosis, ginsenoside Rg1 (50 mu M) activates Akt and Fox O3a phosphorylation, promotes Fox O3a from the nucleus to the cytoplasm, and this change inhibits the regulation of the expression of the downstream apoptosis induced gene and down regulates the apoptotic protein. The expression of Bax and the expression of anti apoptotic protein Bcl-2, and the effect of ginsenoside Rg1 can be inhibited by PI3K inhibitor LY29004, suggesting that Akt-Fox O3-Bim signaling pathway plays an important role in the inhibition of t-BHP induced H UCBDSCs apoptosis by ginsenoside Rg1, and.4. ginsenoside alleviates the induced mitochondrial oxidative damage (1) laser scanning Confocal microscopy showed that after t-BHP damage h UCBDSCs, the fluorescence intensity of DCFH-DA was significantly higher than that of the normal control group, suggesting that the total ROS level in the cell increased. The total ROS level of the ginsenoside Rg1 treated cells gradually decreased with the increase of the concentration of ginsenoside Rg1, indicating that the ginsenoside Rg1 could inhibit the t-BHP induced cells. (2) the laser scanning confocal microscope showed that the red fluorescence of Mito SOX Red was stronger and the mitochondrial O2 - level increased obviously after t-BHP damage h UCBDSCs. The concentration dependent t-BHP induced mitochondria O2. - increase of ginsenoside Rg1, when the concentration was 10 mu M and 50 mu M, was significantly lower than the single treatment It was suggested that ginsenoside Rg1 had the effect of reducing the level of mitochondrial reactive oxygen species. (3) the JC-1 probe labeled h UCBDSCs was observed by laser scanning confocal microscopy, and the ratio of red / green fluorescence intensity was used to represent the mitochondrial membrane potential (delta m). The results showed that, compared with the normal control group, the m UCBDSCs was significantly reduced after t-BHP treated cells. (1,10 and 50 mu M) after ginsenoside Rg1 treated cells, the delta m gradually increased with the increase of the concentration of ginsenoside Rg1, suggesting that ginsenoside Rg1 could inhibit the loss of t-BHP induced H UCBDSCs mitochondrial membrane potential loss. (4) t-BHP damage h UCBDSCs leads to the decrease of the enzyme activity, and the two species of ginsenoside treatment can increase the concentration of the two species. When the concentration of ginsenoside Rg1 was 10 mu M and 50 mu M, the activity level of Mn-SOD enzyme was significantly higher than that of t-BHP single treatment group. When the concentration of ginsenoside Rg1 was 1,10 and 50 u M, the activity of Catalase enzyme was significantly higher than that of the t-BHP single treatment group. The role of body antioxidant.5.AMPK-Sirt1-Fox O3a signaling pathway in the regulation of mitochondrial reactive oxygen species by ginsenoside Rg1 (1) ginsenoside Rg1 (50 mu M) can significantly increase the expression level of Sirt1 in H UCBDSCs cells induced by t-BHP, and also promote the expression of Sirt1 in normal cells. 1 the inhibition of mitochondrial O2 - formation was obviously weakened, the activity of Mn-SOD and Catalase decreased, and the activity of cell decreased. It was suggested that Sirt1 activation for ginsenoside Rg1 played a necessary role in mitochondrial antioxidant activity. (2) AMPK, Sirt1 expression and Fox O3a expression level of deacetylation of t-BHP after t-BHP damage h UCBDSCs Compared with the t-BHP treatment group, ginsenoside Rg1 (50 mu M) can significantly promote the activation of AMPK phosphorylation and the up-regulation of Sirt1 expression level, and then improve the level of Fox O3a deacetylation. After the AMPK Si RNA and Sirt1 Si, this series of effects are suppressed. The signal pathway promotes the deacetylation of Fox O3a, and then up-regulates the expression of two enzymes of Mn-SOD and Catalase mediated by Fox O3a, and plays the role of mitochondrial reactive oxygen scavenging. Conclusion: 1. ginsenoside Rg1 can promote the survival of H UCBDSCs and increase the proliferation ability of t-BHP, and regulate the apoptosis process by regulating Akt-Fox O3a-Bim signal pathway. The important role of.2. ginsenoside Rg1 is to protect h UCBDSCs from mitochondrial oxidative damage induced by t-BHP by removing excessive MT ROS, and this effect is mainly regulated by the O3a signaling pathway of AMPK-Sirt1-Fox.
【学位授予单位】:重庆医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R457.7

【相似文献】

相关期刊论文 前10条

1 王玉堂;李绪文;金海燕;于永;游景艳;张昆;丁兰;张寒琦;;人参中人参皂苷的直接高压微波辅助降解[J];高等学校化学学报;2007年12期

2 韩冬;张铁军;唐铖;田成旺;;人参皂苷的药动学研究进展[J];中草药;2009年02期

3 余潇苓;苗青;方翠芬;;人参皂苷水溶液热稳定性研究[J];中国现代应用药学;2011年12期

4 付聪;杨艳芳;王业静;;药典法和新方法测定人参皂苷含量比较[J];亚太传统医药;2013年11期

5 杨雨;郑斯文;金银萍;姚春林;王英平;;人参皂苷的提取分离方法研究进展[J];江苏农业科学;2014年05期

6 于超,刁长发,夏文娟,周碧珍;反相高效液相色谱法测定人参及其制剂中人参皂苷Rg1含量[J];药物分析杂志;2000年04期

7 王启祥,吕修梅,张晋秀;人参皂苷含量变化研究概况[J];西北药学杂志;2002年05期

8 于荣敏,宋永波,张辉,叶文才,张荫麟,姚新生;西洋参冠瘿组织培养及其人参皂苷Re和人参皂苷Rg_1的产生[J];生物工程学报;2003年03期

9 卢新政,张晓文,黄峻,马根山,侯麦花;人参皂苷Rg_1对培养猪骨髓基质细胞增殖的影响[J];中国药理学通报;2003年03期

10 董淑华,陈波,马忠泽,侯秀云,陈英杰;人参皂苷的体内代谢反应研究[J];人参研究;2003年01期

相关会议论文 前10条

1 朱伟;易琼;王鲁;付本懂;贺常亮;吕爽;毕文岩;;人参皂苷Rh2的药理学研究进展[A];中国畜牧兽医学会2010年学术年会——第二届中国兽医临床大会论文集(下册)[C];2010年

2 王悦;白玉;刘虎威;;高效液相色谱法测定人参中人参皂苷的方法[A];全国生物医药色谱学术交流会(2010景德镇)论文集[C];2010年

3 尚文斌;杨颖;姜博仁;金华;周丽斌;刘尚全;陈名道;;人参皂苷Rb1促进3T3L1细胞的脂肪形成和抑制脂肪分解[A];2006年中华医学会糖尿病分会第十次全国糖尿病学术会议论文集[C];2006年

4 周红祖;胡胜全;余惠e,

本文编号:2052582


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2052582.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5e08a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com