三角帆蚌EST-SSR标记开发及生长性状和内壳色遗传分析
本文选题:三角帆蚌 + 分子标记 ; 参考:《上海海洋大学》2017年硕士论文
【摘要】:三角帆蚌(Hyriopsis cumingii)是我国特有的淡水育珠贝,也是我国最重要的珍珠蚌。本研究从三角帆蚌转录组文库中开发了微卫星分子标记,建立了多重PCR体系;利用分子标记技术,结合分子遗传学,从群体遗传分析、生长性能比较和内壳色遗传分析等方面开展研究。主要研究内容如下:1.三角帆蚌EST-SSR分子标记开发与多重PCR建立从已建立的三角帆蚌转录组文库中挑选了110对微卫星标记,筛选获得38对多态性微卫星标记,每个标记位点的等位基因数(Na)介于3~23之间,平均值为8.47;观测杂合度(Ho)和期望杂合度(He)分别介于0.31~1.00和0.36~0.91之间,平均值分别为0.73和0.71;多态信息含量(PIC)介于0.31~0.85之间,平均值为0.67,其中9个位点表现为中度多态性(0.25PIC0.5),其余29个位点为高度多态性(PIC0.5);38个位点全部符合Hardy Weinberg平衡条件(P0.05)。利用Multiplex Manager version 1.0软件,建立了三组四重PCR体系。2.三角帆蚌不同内壳色群体生长性能比较和遗传分析繁育三角帆蚌养殖群体,后代中出现了内壳色为紫色、白色和黄色等多种颜色的个体。在3月龄和13月龄,分别对白色、黄色和紫色群体样本,进行生长和内壳色数据测量。结果表明:3月龄时期,三种壳色群体没有在壳长、壳宽和体质量方面表现出生长优势;13月龄时期,紫色和白色群体对黄色群体表现出壳长、壳宽和体质量方面的生长优势,且白色和紫色群体之间的生长性能没有产生显著性差异。利用三组四重PCR体系分别对三种内壳色群体进行遗传分析,结果表明:黄色群体观察杂合度(Ho)高于白色和紫色群体;紫色群体期望杂合度(He)和多态信息含量(PIC)都表现为最高;白色群体的杂合度(Ho和He)和多态信息含量(PIC)都表现为最低。三种壳色群体相比较,紫色群体遗传多样性最高,白色群体遗传多样性最低。利用MEGA 4.0软件构建了系统进化树,结果表明:白色和黄色群体之间遗传距离最小,紫色群体与黄色群体之间遗传距离最大;白色群体和黄色群体先聚在一起,然后再和紫色群体聚在一起。3.三角帆蚌内壳色遗传规律分析以内壳色为白色(W)和紫色(P)的选育系三角帆蚌为亲本,开展双列杂交实验。结果表明:三角帆蚌的内壳色能够稳定遗传,白色是隐性性状,紫色为显性性状,且白紫色性状不存在母性遗传;同时本研究推测三角帆蚌内壳色的白紫色性状是受主效基因控制的数量性状,且壳色的表达受到生长环境的影响。
[Abstract]:Hyriopsis cumingii is one of the most important freshwater mussels in China. In this study, microsatellite molecular markers were developed from the transcriptome library of Hyriopsis cumingii, and multiple PCR systems were established. The comparison of growth performance and genetic analysis of inner shell color were carried out. The main research contents are as follows: 1. Development of EST-SSR Molecular Marker and multiple PCR Establishment of Hyriopsis cumingii 110 pairs of microsatellite markers were selected from the established transcripts library of Hyriopsis cumingii. 38 pairs of polymorphic microsatellite markers were obtained. The mean value is 8.47; the observed heterozygosity (HoA) and the expected heterozygosity (HeH) are between 0.31 ~ 1.00 and 0.36 ~ (0.91), respectively, and the average values are 0.73 and 0.71, respectively, and the polymorphic information content (Pi) is between 0.31 and 0.85, respectively. The mean value was 0.67, of which 9 were moderately polymorphic, 29 were highly polymorphic, and 38 were in accordance with the Hardy Weinberg equilibrium condition (P0.05). Using Multiplex Manager version 1.0 software, three groups of quaternion PCR system. 2. 2. Comparison of growth performance and genetic analysis of different inner shell color populations of Hyriopsis cumingii (Hyriopsis cumingii) breeding population of Hyriopsis cumingii showed that individuals with purple, white and yellow inner shell colors appeared in their offspring. At the age of 3 months and 13 months, the growth and inner shell color of white, yellow and purple population samples were measured. The results showed that at the age of 3 months, the three color populations had no growth advantage in terms of shell length, shell width and body mass. The purple and white populations had the advantages of shell length, shell width and body mass to yellow population at the age of 13 months. There was no significant difference in growth performance between white and purple populations. Genetic analysis of three inner shell color populations was carried out by using three groups of four-fold PCR system. The results showed that the observed heterozygosity of yellow population was higher than that of white and purple populations, the expected heterozygosity of purple population was higher than that of white population, and the content of polymorphic information was the highest in purple population. The heterozygosity and polymorphic information content (Pi) of white population were the lowest. The genetic diversity of purple population was the highest, and that of white population was the lowest. The phylogenetic tree was constructed by using MEGA 4.0 software. The results show that the genetic distance between white and yellow populations is the smallest, the genetic distance between purple population and yellow population is the largest, and the white population and yellow population gather together first. And then get together with the purple group. 3. Genetic Analysis of Inner Shell Color of Hyriopsis cumingii A diallel cross experiment was carried out with the breeding line of Hyriopsis cumingii with inner shell color as white (W) and purple Pu () as parent. The results showed that the inner shell color of Hyriopsis cumingii was stable, white was recessive, purple was dominant, and white purple had no maternal inheritance. At the same time, we speculated that the white purple character of inner shell color of Hyriopsis cumingii was a quantitative character controlled by main effector gene, and the expression of shell color was affected by growth environment.
【学位授予单位】:上海海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S917.4
【参考文献】
相关期刊论文 前10条
1 张根芳;张文府;方爱萍;;三角帆蚌贝壳珍珠层颜色遗传规律初步研究[J];动物学杂志;2016年04期
2 殷浩;白志毅;韩学凯;李家乐;;三角帆蚌微卫星多重PCR体系的建立及其应用[J];生物技术通报;2016年01期
3 葛建龙;李琪;于红;孔令锋;于瑞海;;长牡蛎3种壳色家系间杂交子代生长和存活比较[J];水产学报;2015年03期
4 孙祥山;赵炳然;黄经献;宁晨洁;张传涛;曹金凤;方建光;燕敬平;;青蛤壳色遗传初步研究[J];上海海洋大学学报;2015年01期
5 汪桂玲;白志毅;刘晓军;李家乐;;三角帆蚌种质资源研究进展[J];水产学报;2014年09期
6 闻海波;曹哲明;金武;顾若波;华丹;黄晓飞;徐跑;;不同壳色三角帆蚌外套膜基因的SRAP-cDNA差异分析[J];水生生物学报;2014年05期
7 韩学凯;李家乐;王照旗;白志毅;;三角帆蚌四核苷酸重复微卫星的开发及特征分析[J];生物技术通报;2014年06期
8 丛日浩;李琪;葛建龙;孔令锋;于红;;长牡蛎4种壳色家系子代的表型性状比较[J];中国水产科学;2014年03期
9 李佳凯;王志勇;韦信键;蔡明夷;刘洋;刘贤德;;大黄鱼微卫星多重PCR体系的建立及其应用[J];水产学报;2014年04期
10 白成;刘志刚;吴灶和;孙宗红;刘付少梅;;马氏珠母贝4种壳色家系遗传差异的SSR分析[J];广东海洋大学学报;2014年01期
相关博士学位论文 前1条
1 束靖;皱纹盘鲍分子群体遗传学研究[D];中国海洋大学;2007年
相关硕士学位论文 前6条
1 罗红瑞;三角帆蚌贝壳珍珠层颜色形成相关基因的克隆与表达分析[D];上海海洋大学;2015年
2 韩学凯;三角帆蚌遗传连锁图谱构建及育珠相关性状QTL定位分析[D];上海海洋大学;2014年
3 王照旗;三角帆蚌紫色选育系选育效果评估及内壳色和生长性状遗传分析[D];上海海洋大学;2014年
4 方文珊;马氏珠母贝四种壳色遗传规律及壳色杂交家系生长特性研究[D];广东海洋大学;2013年
5 刘越;三角帆蚌供片蚌对珍珠质量的影响[D];上海海洋大学;2013年
6 朱文彬;三角帆蚌两种贝壳珍珠质颜色对珍珠颜色影响的研究[D];上海海洋大学;2011年
,本文编号:1802722
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1802722.html