当前位置:主页 > 硕博论文 > 农业硕士论文 >

钝化剂对牛粪厌氧发酵重金属Cd、Ni、Cu含量及形态的影响

发布时间:2018-04-25 17:39

  本文选题:钝化剂 + 牛粪 ; 参考:《沈阳农业大学》2017年硕士论文


【摘要】:随着我国畜禽养殖业快速发展及配合饲料养殖法的应用,畜禽粪便中重金属的残留问题日益严重。厌氧发酵是处理畜禽粪便的有效途径,而钝化剂对牛粪厌氧发酵中重金属的影响,目前少有研究,因此希望通过本研究为重金属污染控制及沼肥的安全利用提供理论依据。本试验以重金属为研究对象,以牛粪为厌氧发酵原料,添加3种不同种类不同添加比例的重金属钝化剂进行厌氧发酵,通过正交试验的方法,在试验中选取3个因素,每个因素取3个水平;3个因素分别为温度(3个水平分别为22℃C、28℃C、35℃C)、钝化剂种类(3个水平分别为沸石、海泡石、钙镁磷肥)、钝化剂添加比例(3个水平分别为干物质量的5%、2.5%、7.5%),采用BCR提取法分析重金属形态,探索三种不同钝化剂(沸石、海泡石、钙镁磷肥)对牛粪厌氧发酵产气量、甲烷含量及重金属形态变化的影响,以期通过本试验研究,为沼渣沼液的安全合理利用提供科学依据。在接种物量30%、TS为10%、pH为7条件下进行60d牛粪厌氧发酵,按L9(34)安排试验,研究不同处理对牛粪厌氧发酵重金属Cd、Ni、Cu含量及形态的影响,探讨不同处理对牛粪厌氧发酵累积产气量、平均甲烷含量、牛粪厌氧发酵对重金属钝化能力和有效态比例影响。通过上述的试验研究,得出以下主要结论:(1)添加钝化剂有利于牛粪厌氧发酵产气量的增加;温度和钝化剂添加比例对累积产气量有显著影响,而钝化剂种类对累积产气量影响不显著,通过分析得出容积产气率最高的处理为温度35℃条件下,添加5%海泡石的牛粪厌氧发酵处理,容积产气率达到0.285m3/m3·d。添加钝化剂有利于提高甲烷含量,且温度越高甲烷含量越高;温度、钝化剂种类和钝化剂添加比例对甲烷含量均有极显著影响,通过分析得出甲烷含量最高的处理为35℃条件下、添加5%海泡石牛粪厌氧发酵处理,甲烷平均含量达到54.87%。(2)对于重金属Cd,通过对比添加钝化剂的处理、不加钝化剂的处理(即空白处理)发现,温度、钝化剂种类对重金属Cd钝化能力有极显著影响,钝化剂添加比例对重金属Cd钝化能力有显著影响,通过分析得出对重金属Cd钝化能力最高的处理为温度28℃C条件下,添加7.5%海泡石的牛粪厌氧发酵处理,对重金属Cd钝化能力达到63.27%。温度、钝化剂种类对重金属Cd有效态比例有极显著影响,钝化剂添加比例对金属Cd有效态比例有显著影响,通过分析得出牛粪厌氧发酵重金属Cd有效态比例最低的处理为,35℃C条件下,添加2.5%钙镁磷肥的牛粪厌氧发酵处理,重金属Cd有效态比例为42.20%。总体来说,添加钝化剂有利于促使牛粪厌氧发酵重金属Cd趋向无害,重金属Cd主要富集在沼渣中,沼渣中Cd比例在52.04%-75.64%之间。(3)对于重金属Ni,通过对比添加钝化剂的处理、不加钝化剂的处理(即空白处理)发现,温度、钝化剂种类对重金属Ni钝化能力有极显著影响,而钝化剂添加比例对重金属Ni钝化能力影响不显著,通过分析得出重金属Ni钝化能力最高的处理为35℃条件下,添加5%海泡石的牛粪厌氧发酵处理,对重金属Ni钝化能力达到45.76%。温度、钝化剂添加比例对重金属Ni有效态比例有显著影响,而钝化剂种类对金属Ni有效态比例有影响不显著,通过分析得出牛粪厌氧发酵重金属Ni有效态比例最低的处理为35℃条件下,添加5%海泡石的牛粪厌氧发酵处理,重金属Ni有效态比例为45.76%。总体来说,添加钝化剂有利于促使牛粪厌氧发酵重金属Ni趋向无害,重金属Ni主要富集在沼渣中,沼渣中Ni比例在58.59%-70.16%之间。(4)对于重金属Cu,通过对比添加钝化剂的处理、不加钝化剂的处理(即空白处理)发现,温度、钝化剂添加比例对重金属Cu钝化能力有极显著影响,钝化剂种类对重金属Cu钝化能力有显著影响,通过分析得出重金属Cu钝化能力最高的处理为28℃条件下,添加2.5%沸石的牛粪厌氧发酵处理,对重金属Cu钝化能力达到60.19%。温度、钝化剂种类对重金属Cu有效态比例有极显著影响,而钝化剂添加比例对金属Cu有效态比例影响不显著,通过分析得出牛粪厌氧发酵重金属Cu有效态比例最低的处理为35℃C条件下,添加2.5%钙镁磷肥的牛粪厌氧发酵处理,重金属Cu有效态比例为25.78%。总的来说,添加钝化剂有利于促使牛粪厌氧发酵重金属Cu趋向无害,重金属Cu主要富集在沼渣中,沼渣中Cu比例在50.68%-62.92%之间。(5)各处理对重金属Cd、Ni、Cu有效态钝化效果分别为3.15%-30.73%、11.94%-76.89%、1.9%-80.99%。22℃条件下,最优的处理为,添加5%沸石的处理对重金属有效态钝化效果顺序为:CuNiCd。35℃条件下,较优的处理为,添加7.5%沸石的处理和添加2.5%钙镁磷肥的处理,对有效态重金属的钝化效果顺序为:CuNiCd。28℃条件下,最优的处理为,添加2.5%沸石的处理对有效态重金属的钝化效果顺序为:NiCuCd。
[Abstract]:With the rapid development of livestock and poultry industry in China and the application of feed breeding method, the problem of heavy metal residues in livestock and poultry manure is increasingly serious. Anaerobic fermentation is an effective way to deal with livestock and poultry manure, and the effect of passivating agent on heavy metal in anaerobic fermentation of cow dung is seldom studied. Therefore, it is hoped that this study can control the pollution of heavy metals through this study. This experiment takes the heavy metal as the research object, taking the cow dung as the anaerobic fermentation material, adding 3 kinds of different kinds of heavy metal passivating agent to anaerobic fermentation. Through the orthogonal test, 3 factors are selected in the experiment, each factor is 3 levels, and the 3 factors are temperature respectively. (3 levels are 22 C, 28 C, 35 C C), the species of passivating agent (3 levels are zeolite, sepiolite, calcium magnesium phosphate fertilizer), and the proportion of passivating agent (3 levels are 5%, 2.5%, 7.5%) of the dry matter, respectively. The BCR extraction method is used to analyze the speciation of heavy metals, and three different passivating agents (zeolite, sepiolite, calcium magnesium phosphate) are used for anaerobic fermentation of cow dung. In order to provide a scientific basis for the safe and rational utilization of biogas slurry, the effects of gas production, methane content and heavy metal morphologic changes were provided. The anaerobic fermentation of 60d cow dung was carried out under the conditions of 30% inoculation, TS 10% and pH 7, and the contents of Cd, Ni, Cu in anaerobic fermentation of cattle manure were studied by L9 (34). The effects of different treatments on the cumulative gas yield of anaerobic fermentation of cow dung, the average methane content, the effect of the anaerobic fermentation of cow dung on the passivation capacity and the effective proportion of the heavy metal were investigated. The following main conclusions were obtained: (1) the addition of passivating agent was beneficial to the increase of the anaerobic fermentation of cow dung, and the addition of temperature and passivating agent. The ratio has a significant effect on the cumulative gas production, while the effect of the passivating agent on the cumulative gas production is not significant. Through the analysis, the treatment of the highest volume gas production rate is that the anaerobic fermentation of cow dung with 5% sepiolite is added under the condition of 35 degrees centigrade. The volume gas production rate is 0.285m3/m3. D. adding passivating agent is beneficial to increase the methane content, and the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is The higher the content of the methanane, the temperature, the type of passivating agent and the proportion of the passivating agent have great influence on the methane content. Through the analysis, the anaerobic fermentation of 5% sepiolite cow dung is added to the treatment of the highest methane content at 35. The average methane content is 54.87%. (2) to the heavy metal Cd, and the treatment of the passivating agent is added by contrast. Without the treatment of passivating agent (blank treatment), it is found that temperature and passivating agent have a significant effect on the passivation ability of heavy metal Cd, and the ratio of passivating agent has a significant influence on the passivation ability of heavy metal Cd. The treatment of the highest passivation ability of heavy metal Cd is that the anaerobic hair of cow dung adding 7.5% sepiolite is added to the temperature of 28 degrees C. The passivation capacity of heavy metal Cd reached 63.27%. temperature, and the species of passivating agent had a significant effect on the ratio of effective state of heavy metal Cd, and the proportion of passivating agent had a significant influence on the ratio of effective state of metal Cd. Through analysis, the treatment of the lowest effective proportion of heavy metal Cd in the anaerobic fermentation of cow dung was the addition of 2.5% calcium, magnesium and phosphorus under the condition of 35 C C. In the anaerobic fermentation of manure, the effective proportion of heavy metal Cd is 42.20%., and the addition of passivating agent is beneficial to the harmless heavy metal Cd in the anaerobic fermentation of cow dung, and the heavy metal Cd is mainly enriched in the biogas residue, and the proportion of Cd in the biogas residue is between 52.04%-75.64%. (3) the heavy gold belongs to Ni, and the passivating agent is not passivated by the treatment of the addition of passivating agent. The treatment (blank treatment) found that temperature and passivating agent have significant influence on the passivation ability of heavy metal Ni, while the proportion of passivating agent has no significant influence on the passivation ability of heavy metal Ni. The treatment of the highest passivation ability of heavy metal Ni is that the anaerobic fermentation of cow dung adding 5% sepiolite is treated under the condition of 35 degrees. The passivation capacity of Ni reached 45.76%. temperature, and the proportion of passivating agent had a significant effect on the effective state ratio of heavy metal Ni, while the species of passivating agent had no significant influence on the ratio of effective state of metal Ni. Through analysis, the treatment of the lowest effective proportion of heavy metal Ni in the anaerobic fermentation of cattle manure was 35 C, and 5% sepiolite was added to the anaerobic fermentation of cow dung. Treatment, the effective state ratio of heavy metal Ni is 45.76%. overall, the addition of passivating agent is beneficial to the harmless heavy metal Ni in the anaerobic fermentation of cow dung, and the heavy metal Ni is mainly enriched in the biogas residue, and the proportion of Ni in the biogas residue is between 58.59%-70.16%. (4) the treatment of heavy metal Cu, by contrast with the treatment of adding passivating agent, is not treated with the passivating agent (i.e. blank place). It is found that temperature and addition ratio of passivating agent have a significant effect on the passivation ability of heavy metal Cu. Passivating agent has a significant influence on the passivation ability of heavy metal Cu. Through analysis, the treatment of the highest passivation ability of heavy metal Cu is 28 C, adding 2.5% zeolite to oxy fermentation of cow dung, and the passivation ability of heavy metal Cu to 60.19%. Temperature, the type of passivating agent has a very significant influence on the effective state ratio of heavy metal Cu, while the proportion of passivating agent has no significant influence on the Cu effective proportion of metal. Through analysis, it is concluded that the lowest effective proportion of heavy metal Cu in the anaerobic fermentation of cow dung is 35 centigrade C, and 2.5% calcium magnesium phosphate fertilizer is added to the anaerobic fermentation of cow dung, and the heavy metal Cu is effective. As a result of 25.78%., the addition of passivating agent is beneficial to the harmless heavy metal Cu in the anaerobic fermentation of cow dung, and the heavy metal Cu is mainly concentrated in the biogas residue, and the proportion of Cu in the biogas slag is 50.68%-62.92%. (5) the effective passivation effect of each treatment on heavy metals Cd, Ni and Cu is 3.15%-30.73%, 11.94%-76.89%, 1.9%-80.99%.22, respectively. The optimal treatment was that the effective passivation effect of adding 5% zeolite to the effective state of heavy metals was as follows: under the condition of CuNiCd.35 C, the better treatment was, the treatment of adding 7.5% zeolite and the treatment of adding 2.5% calcium magnesium phosphate fertilizer, the order of passivation effect to the effective heavy metals was as follows: the optimal treatment was at the condition of CuNiCd.28 C, and the treatment of adding 2.5% zeolite was the best treatment. The effective order of the passivation effect of the active heavy metals is: NiCuCd.

【学位授予单位】:沈阳农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S216.4

【相似文献】

相关期刊论文 前10条

1 郭亮;马传杰;花日茂;;温度对畜禽粪便厌氧发酵影响的研究现状[J];当代畜牧;2008年09期

2 徐卫佳;用厌氧发酵技术处理农村养殖场畜禽粪便[J];可再生能源;2004年01期

3 李文哲;公维佳;;固体有机废弃物厌氧发酵反应器微生物载体选择研究[J];农业工程学报;2006年S1期

4 夏吉庆;李文哲;李惠强;;牛粪厌氧发酵的载体筛选试验研究[J];环境工程学报;2008年10期

5 宁桂兴;申欢;文一波;王凯;李天增;;农作物秸秆干式厌氧发酵实验研究[J];环境工程学报;2009年06期

6 陈智远;蔡昌达;石东伟;;不同温度对畜禽粪便厌氧发酵的影响[J];贵州农业科学;2009年12期

7 王许涛;刘丽莎;张百良;;蒸汽爆破预处理技术应用于秸秆厌氧发酵的技术经济分析[J];可再生能源;2010年02期

8 周玮;董保成;齐岳;;不同处理秸秆中温厌氧发酵的产气效果[J];中国沼气;2010年03期

9 杨立;张婷;龚乃超;李红丽;;稀碱法预处理对秸秆厌氧发酵产气的影响研究[J];安徽农业科学;2011年15期

10 马文瑞;王惠生;张燕;王清;赵辉;;冲厕沼液曝氧法除臭对厌氧发酵产气的影响[J];西北农业学报;2012年03期

相关会议论文 前10条

1 罗艳;陈广银;罗兴章;郑正;郑斌国;方彩霞;;篁竹草厌氧发酵产气特性及结构变化研究[A];2010中国环境科学学会学术年会论文集(第四卷)[C];2010年

2 钱午巧;包武;陈彪;林代炎;卢济事;;利用厌氧发酵技术综合治理畜牧业污染的探讨[A];福建省科协第三届学术年会“能源可持续发展”研讨会论文专辑[C];2003年

3 何光设;蒋恩臣;;厌氧发酵过程数学模型研究[A];农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第四分册[C];2005年

4 雷宇;马煜;刘士清;张无敌;尹芳;徐锐;李建昌;陈玉保;;宠物狗粪便厌氧发酵试验研究[A];2011年中国沼气学会学术年会暨第八届理事会第二次会议论文集[C];2011年

5 常国璋;席新明;郭康权;杨秀生;;不同原料配比对餐饮废弃物高温厌氧发酵的影响[A];中国农业工程学会2011年学术年会论文集[C];2011年

6 唐蓉;;烟草废弃物高温干式厌氧发酵的中试研究[A];中国农业工程学会2011年学术年会(CSAE 2011)论文摘要集[C];2011年

7 钱午巧;包武;陈彪;林代炎;卢济事;;利用厌氧发酵技术综合治理畜牧业污染的探讨[A];福建省农业工程学会2004年学术年会纪念学会建会20周年论文汇编[C];2004年

8 刘丹;李文哲;;两相厌氧发酵工艺的研究[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年

9 庞小平;牛明芬;王赛月;王昊;;农作物秸秆厌氧发酵影响因素探讨[A];科技创新与产业发展(A卷)——第七届沈阳科学学术年会暨浑南高新技术产业发展论坛文集[C];2010年

10 王阳;林聪;韩艳霄;程东林;;早熟禾厌氧发酵产气研究[A];2011年中国沼气学会学术年会暨第八届理事会第二次会议论文集[C];2011年

相关重要报纸文章 前10条

1 平卫东;南丰生猪污物“厌氧发酵”环保又经济[N];抚州日报;2008年

2 记者 胡左;我首条垃圾联合厌氧发酵生产线运行[N];科技日报;2009年

3 张继东;城市生物质垃圾联合厌氧发酵工艺在东胜区实现工厂化生产[N];鄂尔多斯日报;2010年

4 钱伯章;秸秆厌氧发酵制氢产气量提高[N];中国化工报;2009年

5 尚东 编译;厌氧发酵:城市垃圾处理新方法[N];中国房地产报;2006年

6 史晓龙;国家专款支持农业固体废弃物转化研究[N];中国税务报;2007年

7 本报记者 李晓岩;专家勾勒生物基化学品路线图[N];中国化工报;2006年

8 记者 陈红阳 特约通讯员 吴阁玮;我市可望实现沼气产业化[N];湛江日报;2009年

9 特约记者 魏建军;循环经济产业链让玉米增值6倍[N];中国化工报;2007年

10 杜杰;畜禽粪便能生产高效有机肥[N];中国乡镇企业报;2004年

相关博士学位论文 前10条

1 王明;生物质组成成分对厌氧发酵产甲烷的影响[D];东北农业大学;2015年

2 董晓莹;蔬菜废弃物两相厌氧发酵工艺产沼气试验研究[D];沈阳农业大学;2016年

3 梁勇;生物炭介导的鸡粪不同温度厌氧发酵解抑增效特性及过程建模[D];西北农林科技大学;2016年

4 孟尧;玉米秸秆厌氧发酵瘤胃仿生工艺研究[D];清华大学;2016年

5 张彤;温度和pH值调控对厌氧发酵产甲烷影响的研究[D];西北农林科技大学;2017年

6 孙薇;畜禽粪便厌氧发酵过程中抗生素抗性基因变化机理研究[D];西北农林科技大学;2017年

7 刘丹;餐厨废弃物厌氧发酵特性研究[D];东北农业大学;2014年

8 张存胜;厌氧发酵技术处理餐厨垃圾产沼气的研究[D];北京化工大学;2013年

9 杨天学;玉米秸秆干式厌氧发酵转化机理及微生物演替规律研究[D];武汉大学;2014年

10 楚莉莉;沼气高效厌氧发酵的条件及产气效应研究[D];西北农林科技大学;2011年

相关硕士学位论文 前10条

1 刘博;基于LS-SVM的厌氧发酵过程软测量建模研究[D];华南理工大学;2015年

2 何岩;不同厌氧发酵条件对漆酶预处理秸秆产沼气的影响研究[D];东北林业大学;2015年

3 潘洪加;土霉素对厌氧发酵过程古菌群落及抗性基因的影响[D];西北农林科技大学;2015年

4 程俊伟;不同餐厨泔水生物质垃圾沉降性能及厌氧发酵试验研究[D];西南交通大学;2015年

5 段彦芳;中温混合厌氧发酵产沼气影响条件分析及优化[D];哈尔滨工业大学;2015年

6 白晓磊;鲟鱼养殖尾水栽培微藻及其两相厌氧发酵产沼气工艺研究[D];大连海洋大学;2015年

7 毛春兰;不同底物浓度下初始pH值影响厌氧发酵效果的研究[D];西北农林科技大学;2015年

8 刘琳琳;两种矿物添加剂对不同底物厌氧发酵特性影响研究[D];西北农林科技大学;2015年

9 马吉龙;基于CFD的厌氧发酵搅拌技术研究[D];东北农业大学;2015年

10 张文婷;废弃脐橙厌氧发酵产沼技术研究[D];南昌大学;2013年



本文编号:1802315

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1802315.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户24a6a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com