小麦面筋强度和馒头加工品质的QTL定位
本文选题:小麦 + 面筋强度 ; 参考:《山东农业大学》2017年硕士论文
【摘要】:小麦作为重要的粮食作物,其品质的优劣对于人们生活水平的提高具有重要的意义。小麦营养品质包括氨基酸平衡度和蛋白质含量,加工品质分为磨粉品质和食品加工品质,馒头作为中国北方的主食,其品质的优劣直接影响到人们的生活水平。面筋强度作为影响食品加工品质优劣的重要指标之一,对其进行遗传研究对小麦品质改良具有重要的意义。本研究以“山农01-35”ד藁城9411”构建的含173个家系的RIL群体和由205个品种(系)构成的自然群体为材料,利用已构建完成的2个高密度遗传图谱,对小麦面筋强度、面筋氨基酸含量及馒头加工品质同时进行连锁和关联分析;将定位到的沉淀值和馒头高度的主效QTL位点QSed1B.1-26和QHei5B.5-488转化为实用性CAPS标记;并利用生物信息学的方法在QHei5B.5-488区段开发新的CAPS标记、加密图谱,为精细定位奠定基础。本研究主要研究结果如下:1.重要基因位点:在1A、1B、1D、4B、7B和7D染色体上检测到的控制小麦面筋强度的QTL位点,其中QSed1B.1-26,QSed1D-4,QGI1D-2及QDG4B.4-13是影响面筋强度的重要位点,贡献率都超过10%。在1A、1B、2A、2B、3A、3B、4A、4B、5B、6B、7A染色体上检测到控制氨基酸含量的基因位点,其中染色体片段1B.4-38(TA004690-1102-RAC875_REP_C113316_305)和1D染色体的BS00065510_51位点同时控制多种氨基酸。在1A、1B、2A、3A、3B、4A、5B和7B染色体上检测到控制馒头加工品质的基因位点,其中QHei5B.5-488和1D-116(wsnp_Ex_c35886_43949442,wsnp_Ex_c35886_43950574,BS00093390_51)是控制馒头加工品质的重要基因位点。2.实用性CAPS标记开发:根据SNP标记TDURUM_CONTIG98378_452和KU_C14332_22613741的序列信息,开发与小麦沉淀值和馒头高度性状紧密连锁1B-CAPS1和5B-CAPS2标记并验证,可应用于分子标记辅助选择育种。3.QHei5B.5-488区段加密:开发新的分子标记CAPS-5B-488,该标记距离距RAC875_C29431_1849的遗传距离为3.51cM,距WSNP_KU_C14332_22613741的遗传距离为1.65cM。并将馒头高度基因定位到RAC875_C29431_1849-CAPS-5B-488区间内,使目标区段的遗传距离由原来的5.16 cM缩短至3.51 cM。
[Abstract]:Wheat is an important food crop, its quality is of great significance to the improvement of people's living standard. The nutritional quality of wheat includes amino acid balance and protein content, processing quality is divided into milling quality and food processing quality. Steamed bread is the main food in northern China, and its quality directly affects people's living standard. Gluten strength is one of the important indexes affecting the quality of food processing. Genetic study on gluten strength is of great significance to wheat quality improvement. In this study, using "Shannong 01-35" 脳 "Gaocheng 9411" constructed RIL population with 173 families and natural population composed of 205 varieties (lines) as materials, the strength of gluten in wheat was determined by using two high density genetic maps that had been constructed. The amino acid content of gluten and the processing quality of steamed bread were analyzed by linkage and correlation analysis, and the QSed1B.1-26 and QHei5B.5-488 were transformed into practical CAPS markers. The bioinformatics method was used to develop new CAPS markers and encrypt maps in the QHei5B.5-488 region, which laid the foundation for fine location. The main results of this study are as follows: 1. Important gene loci: QTL loci of wheat gluten intensity were detected on chromosome 1A1B, 1D, and 7D, of which QSed1B.1-26 QSed1D-4 QGI1D-2 and QDG4B.4-13 were important sites affecting gluten strength, and the contribution rate was more than 100.The results showed that QSed1B.1-26QSed1D-4QGI1D-2 and QDG4B.4-13 were the important sites affecting gluten strength. A gene locus controlling amino acid content was found on chromosome 1A ~ 1B ~ (2) A ~ (2) A ~ (3) A ~ (4) B ~ (5) B ~ (5) B ~ (6) B ~ (7) A, and the BS00065510_51 locus of chromosome 1B.4-38 (TA004690-1102-RAC875) and the BS00065510_51 locus of chromosome 1D were used to control a variety of amino acids at the same time. The gene loci controlling the processing quality of steamed bread were detected on chromosomes 1A ~ (1) A ~ (2) A ~ (3) A ~ (4) A ~ (5) B chromosome 7B, in which QHei5B.5-488 and 1D-116 ~ (6) WS _ (n) ~ (pS) _ (c3588 ~ (6) 43949 ~ (44) 4 ~ 2) were the important gene loci to control processing quality of steamed bread. Practical CAPS marker development: according to the sequence information of SNP marker TDURUM_CONTIG98378_452 and KU_C14332_22613741, the 1B-CAPS1 and 5B-CAPS2 markers were developed and verified closely with wheat sedimentation value and steamed bread height traits. It can be used in molecular marker-assisted selection breeding. 3.QHei5B.5-488 region encryption: develop a new molecular marker CAPS-5B-488, the genetic distance from the marker to RAC875_C29431_1849 is 3.51 cm, the genetic distance from WSNP_KU_C14332_22613741 is 1.65 cm. The height gene of steamed bread was mapped into the RAC875_C29431_1849-CAPS-5B-488 region, and the genetic distance of the target region was shortened from 5.16 cm to 3.51 cm.
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS213.2;S512.1
【参考文献】
相关期刊论文 前10条
1 陈广凤;陈建省;田纪春;;小麦株高相关性状与SNP标记全基因组关联分析[J];作物学报;2015年10期
2 陈广凤;李青芳;张晗;师翠兰;孙彩铃;邓志英;刘凯;谷植群;田纪春;;利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析[J];中国农业科学;2014年24期
3 姜小苓;茹振钢;田纪春;;小麦DH群体氨基酸含量的遗传变异及相关性分析[J];麦类作物学报;2013年05期
4 张璐;崔柳青;王晓曦;谭晓荣;;面筋蛋白与小麦加工品质关系研究进展[J];河南工业大学学报(自然科学版);2012年04期
5 唐怀君;殷贵鸿;夏先春;冯建军;曲延英;何中虎;;1BL·1RS特异性分子标记的筛选及其对不同来源小麦品种1RS易位染色体的鉴定[J];作物学报;2009年11期
6 ;Detection of QTLs with Additive Effects, Epistatic Effects, and QTL × Environment Interactions for Zeleny Sedimentation Value Using a Doubled Haploid Population in Cultivated Wheat[J];Agricultural Sciences in China;2009年09期
7 陈华萍,魏育明,郑有良;四川地方小麦品种蛋白质和氨基酸间的相关研究[J];麦类作物学报;2005年05期
8 何中虎,林作楫,王龙俊,肖志敏,万富世,庄巧生;中国小麦品质区划的研究[J];中国农业科学;2002年04期
9 王恕;从湿面筋含量和面筋指数来评价中国河南和法国小麦面筋[J];中国粮油学报;1999年06期
10 王渭玲,赵文明,,李鸿恩;不同小麦品种籽粒氨基酸组成及其营养品质评价[J];西北农业学报;1995年03期
本文编号:1839949
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1839949.html