当前位置:主页 > 硕博论文 > 农业硕士论文 >

光质对坛紫菜生长和生理学特性的影响及坛紫菜丝状体蓝光效应的转录组分析

发布时间:2018-05-29 21:43

  本文选题:坛紫菜 + 丝状体 ; 参考:《上海海洋大学》2017年硕士论文


【摘要】:坛紫菜(Pyropia haitanensis)隶属属红藻门(Rhodophyta),是我国特有的暖温带紫菜栽培品种,主要养殖在浙江、福建和广东等沿海地区。坛紫菜具有丰富的营养价值备受国人喜爱,其年产量占全国紫菜产量的75%以上。坛紫菜的生活史由宏观的叶状体世代和微观的丝状体世代构成,其中我们食用的部分是坛紫菜的叶状体。叶状体是由丝状体附壳后生长发育形成,丝状体可以“农业种子”的形式在实验室长期保存。光是光合作用进行的原动力,光质是光的重要属性,海洋水体水深和透明度的变化会使光质发生变化,光质对藻类的生长发育、形态和光合作用等具有调控作用。本实验以坛紫菜丝状体和叶状体作为实验材料,研究光质对坛紫菜丝状体和叶状体生长和生理的影响,并从分子水平探究光质对坛紫菜转录组的影响。主要结果如下:1.不同光质LED光源对坛紫菜自由丝状体生长和生理学特性的影响比较研究了不同光质(绿光510~550nm、蓝光455~475nm、红光580~630nm、白光400~760nm)的发光二极管(LED)对无性增殖过程中自由丝状体生长及生理特性的影响。研究表明,蓝光能提高自由丝状体的生长速率,蓝光下藻体增重分别是白光、绿光、红光下藻体增重的1.10倍、1.82倍和2.17倍(P0.05)。蓝光处理有助于叶绿素a和类胡萝卜素的积累,两者含量分别较白光、绿光和红光处理提高13.77%、47.69%、63.42%和8.87%、87.07%、97.73%(P0.05)。蓝光和白光均有利于藻红蛋白合成,绿光和红光降低藻红蛋白合成,但四种光质的LED光源对藻蓝蛋白合成无显著性差异(P0.05)。蓝光能显著提高碳酸酐酶(CA)活性,较白光下CA活性增加11.36%(P0.05)。蓝光和绿光显著提高1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)活性,分别较白光下RubisCO活性增加28.17%和61.21%(P0.05)。红光和绿光下藻体在培养后期的色泽暗淡,星状色素体少,部分藻体细胞内容物溢出,呈中空状态;而蓝光和白光下藻体健康正常,色泽鲜红。因此,在今后的坛紫菜自由丝状体无性扩繁过程中可以适当增加LED光源的蓝光组分,减少红光和绿光组分。2.蓝光和黑暗条件下坛紫菜自由丝状体的转录组基因差异表达分析采用高通量转录组测序技术,建立坛紫菜丝状体转录组文库,分析蓝光下坛紫菜丝状体转录谱基因表达变化。本次测序共获得unigenes 124527条,平均长度585bp,GC含量为59.96%。所有GO注释中生物学过程中的注释unigenes数量最多,共24535条,单个条目中催化作用具有的unigenes最多,达8497条。eggNOG功能分析中一般功能基因占总unigenes比例为4.09%,翻译后的修饰、蛋白质折叠和分子伴侣(3.42%)和信号传导机制(2.90%)次之,包含unigenes数目最少的三个功能单元为核酸结构(0.11%)、细胞外结构(0.05%)和细胞运动(0.02%)。KEGG分析中注释unigenes最多的是代谢程序和遗传信息程序。本文通过比对分析筛选出5936条差异unigenes,其中1457条上调基因和4479条下调基因。差异表达的unigenes在代谢、氨基酸合成、乙醛酸和二羧酸循环等通路显著富集,表明这些unigenes主要参与了坛紫菜丝状体的基础代谢、蛋白质合成、呼吸作用和酶活性条件等。3.不同光质LED光源对坛紫菜叶状生长发育的影响比较研究了不同光质(绿光510~550nm、蓝光455~475nm、红光580~630n m、白光400~760nm)的发光二极管(LED)对坛紫菜叶状体生长及生理特性的影响。结果表明:四种光质培养下白光生长最好,与其它实验组间差异显著,白光下最高特定生长率超出蓝光84.54%,绿光90.28%(P0.05)。培养25d后白光下叶状体长度最高可达51.55cm,平均长度是蓝光、绿光红光增长长度的2.66、3.86和2.42倍(P0.05),三种单一光色中红光生长最快,绿光最慢。叶状体形态观察和显微观察发现不同光质下坛紫菜叶状体的色泽和细胞发生变化,蓝光下藻体深红,细胞排列紧密,红光和绿光下藻体色泽减淡。在对叶状体进行色素蛋白检测发现不同光质下色素蛋白含量有明显差异,其中蓝光下叶绿素a和类胡萝素含量最高,红光下最低(P0.05),绿光下藻体叶绿素含量与对照组无明显差异(P0.05)。蓝光下藻体藻胆蛋白含量显著高于其他实验组(P0.05),其中蓝光下藻红蛋白的含量已经达到对照组白光下1.94倍,绿光和红光下藻红蛋白含量显著低于白光。藻蓝蛋白含量蓝光下较白光增加19%,绿光和红光下较对照组减少19.34%和11.57%。蓝光和绿光下坛紫菜叶状体在培养15d后有单性生殖现象发生,蓝光下发生单性生殖的细胞可完全转变为丝状体且色泽正常,绿光下丝状体会发育停滞并出现细胞死亡现象。
[Abstract]:Pyropia haitanensis, which belongs to the red algae gate (Rhodophyta), is a unique warm temperate laver in China. It is mainly cultivated in Zhejiang, Fujian and Guangdong and other coastal areas. It has rich nutritional value and is popular among Chinese people. Its annual output accounts for more than 75% of the national purple vegetable production. The life history of the purple Porphyra is from macroleaf. The form of the filamentous generation and the microscopic filamentous generation, of which we eat part of the leaf shaped body of Porphyra haitanensis. The leaf shape is formed and developed from the filamentous body, and the filamentous form can be preserved in the form of "agricultural seed" in the laboratory for a long time. Light is the original force of photosynthesis, the light quality is the important attribute of light, water water water. The changes in depth and transparency can change the light quality, and the light quality regulates the growth, development, morphology and Photosynthesis of algae. In this experiment, the effects of light quality on the growth and physiology of the filamentous body and leaf body of Porphyra haitanensis were studied in this experiment, and the light quality was explored from the molecular level to the Porphyra haitanensis. The main results were as follows: 1. the effects of different light quality LED light sources on the growth and physiological characteristics of free filamentous bodies of Porphyra haitanensis were compared, and the growth and physiological characteristics of free filamentous bodies (LED) with different light quality (green light 510~550nm, blue light 455~475nm, red light 580~630nm, white light 400~760nm) were studied. The study shows that blue light can increase the growth rate of free filamentous bodies. The weight gain of the algae under blue light is 1.10 times, 1.82 times and 2.17 times (P0.05), respectively. The blue light treatment helps the accumulation of chlorophyll a and carotenoid, the content of the two is compared with the white light, the green light and the red light treatment are increased by 13.77%, 47.69%, 63.42%. And 8.87%, 87.07%, 97.73% (P0.05). Blue and white light both benefit the biosynthesis of phycoerythroprotein, green light and red light reduce the synthesis of phycohemoglobin, but there is no significant difference in phycocyanin synthesis between four light light sources (P0.05). Blue light can significantly increase the activity of carbonic anhydrase (CA) and increase the activity of CA under white light by 11.36% (P0.05). Blue and green light is significantly increased. The activity of high 1,5- two phosphoric acid nuclear ketosylcarboxycarboxytransferase / oxygenase (RubisCO) increased by 28.17% and 61.21% (P0.05) under white light respectively. The color and lustre of red and green algae were dim, the stellate pigments were less, some of the algae body cells were spillover and hollow state, while the blue and white algae were healthy and the color was bright red. Therefore, in the process of the free filamentous reproduction of Porphyra haitanensis, the blue light component of LED light source can be properly increased, and the differential expression of the free filamentous body of Porphyra haitanensis under the blue and green light and dark conditions is reduced by the differential expression analysis of the free filamentous body of Porphyra haitanensis under the conditions of.2. and dark. High throughput transcriptional sequence is used to establish the library of the filamentous body transcriptional group of Porphyra haitanensis. The changes of the gene expression in the filamentous body of Porphyra haitanensis under blue light were analyzed. 124527 unigenes strips were obtained with an average length of 585bp. The content of GC was the highest number of annotated unigenes in all GO annotations of 59.96%., a total of 24535, with the most unigenes in the single entry catalysis, reaching 8497.EggNOG functional analysis. The general functional genes account for 4.09% of the total unigenes, post-translational modification, protein folding and molecular chaperone (3.42%) and signal transduction mechanism (2.90%), including three functional units with the least number of unigenes (0.11%), the extracellular structure (0.05%) and cell movement (0.02%).KEGG analysis, most of which are metabolism. Through comparison and analysis, this paper screened 5936 differences unigenes, including 1457 up-regulated genes and 4479 down regulated genes. The differential expression of unigenes was significantly enriched in metabolism, amino acid synthesis, glyoxylic acid and two carboxylic acid cycles, indicating that these unigenes were mainly involved in the basal metabolism of the filamentous body of Porphyra haitanensis. The effects of protein synthesis, respiration and enzyme activity on the growth and development of leaf shape of Porphyra haitanensis.3. were compared. The effects of light emitting diodes (green light 510~550nm, blue light 455~475nm, red light 580~630n m, white light 400~760nm) on the growth and physiological characteristics of Tan Zi leaflets were compared. The results showed that four kinds of light emitting diodes (LED) had the effects on the growth and physiological characteristics of the leaf shape of Tan Zi. White light growth was the best in light mass culture. The maximum specific growth rate under white light exceeded blue light 84.54% and green light 90.28% (P0.05). The maximum length of white light under white light was up to 51.55cm, the average length was blue light, 2.66,3.86 and 2.42 times (P0.05) of green light and red light growth length (P0.05), and three single light colors were red. The color and the cells of the leaf shape of Porphyra haitanensis under different light quality were observed and observed by the microscopic observation and microscopic observation. The color and the color of the algae in the blue light and the green light under blue light were very red under the blue light, and the pigment protein content in the different light quality was obviously poor. The content of chlorophyll a and carotene like under blue light was the highest, the lowest under red light (P0.05), and there was no significant difference between the chlorophyll content of the green light and the control group (P0.05). The content of phycobentin in blue light algae was significantly higher than that of the other experimental groups (P0.05), and the content of phycosalin under blue light had reached 1.94 times that of the control group, green and red. The content of phycocyanin in light was significantly lower than that of white light. The content of phycocyanin was increased by 19% under blue light, 19.34% in green light and under red light, and 19.34% in green light and in the control group, and by 11.57%. blue light and green light under the culture of Porphyra haitanensis. After the culture of 15d, the cells of monogenesis in blue light could be completely transformed into filamentous body and the color and lustre were normal. Under green light, filamentous development stops and cell death occurs.
【学位授予单位】:上海海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S917.3

【相似文献】

相关期刊论文 前10条

1 董宏坡,左正宏,王重刚,王诚,陈奕欣;福建省平潭海区坛紫菜品质性状的分析[J];厦门大学学报(自然科学版);2004年05期

2 李兵;徐燕;纪德华;张元;谢潮添;;高温静水胁迫培养对坛紫菜品质的影响[J];渔业科学进展;2013年03期

3 欧洪来;;坛紫菜新品种“申福二号”养殖技术[J];中国水产;2013年06期

4 高洪峰,纪明侯,曹文达;南、北方坛紫菜多糖结构特征的比较研究[J];海洋与湖沼;1992年05期

5 林星;坛紫菜的主要病害与对策[J];科学养鱼;2003年02期

6 王奇欣;福建省坛紫菜加工产业化发展思路[J];福建水产;2005年02期

7 陈烨,裴鲁青,严小军,杨锐;磷对坛紫菜孢子囊枝形成的影响[J];水产养殖;2005年05期

8 谢松平;坛紫菜固定桩悬浮式养殖技术[J];中国水产;2005年03期

9 骆其君;冯婧;严小军;吕彤;;海水围塘生态栽培坛紫菜[J];水产科学;2006年11期

10 邱澄宇;;坛紫菜等温吸湿曲线的研究[J];集美大学学报(自然科学版);2008年01期

相关会议论文 前10条

1 孙彬;黄健;马家海;宋武林;谢程亮;;坛紫菜品质分析[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

2 陈海敏;严小军;王秀娟;朱竹君;;坛紫菜的免疫防御方式研究[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

3 陈昌生;谢潮添;纪德华;徐燕;史修周;梁艳;张元;周巍巍;赵玲敏;;坛紫菜新品系选育的研究[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年

4 左正宏;杨听林;王礞礞;蔡嘉力;陈奕欣;;坛紫菜别藻蓝蛋白的表达、纯化及生物学活性的分析[A];第十次中国生物物理学术大会论文摘要集[C];2006年

5 严兴洪;周晓;陈俊华;李琳;梁志强;;一种坛紫菜新细菌病害的研究[A];中国水产学会第五届青年学术年会摘要集[C];2004年

6 肖海东;;坛紫菜果糖1,6-二磷酸酶基因的克隆和表达分析[A];2012年中国水产学会学术年会论文摘要集[C];2012年

7 左正宏;江雨;陈瑜芳;王重刚;陈奕欣;;外源植物激素对坛紫菜生长发育的影响及蛋白组学分析[A];第十次中国生物物理学术大会论文摘要集[C];2006年

8 骆其君;冯婧;严小军;裴鲁青;J.G.Ferreira;;坛紫菜可视化个体生长模型的构建[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

9 代真真;谢潮添;徐燕;纪德华;陈昌生;;坛紫菜碳酸酐酶家族基因的克隆与表达分析[A];2013年中国水产学会学术年会论文摘要集[C];2013年

10 严兴洪;黄林彬;周晓;李琳;;坛紫菜的一种新细菌病害[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

相关重要报纸文章 前10条

1 本报记者  林淑霞;坛紫菜再现“黑金”魅力[N];福建日报;2006年

2 本报记者 张建琛;福建坛紫菜产业何以焕发青春[N];科技日报;2006年

3 邱新福邋章国森;最大坛紫菜加工厂落户苍南[N];温州日报;2007年

4 李玉燕 剑锋 姜艳红;五颜六色的紫菜有望明年上市[N];农民日报;2006年

5 本报记者 张跃良;亲亲坛紫菜:标准化推动产业化[N];中国工业报;2008年

6 记者 黄元章;采取五项措施应对坛紫菜烂苗[N];闽东日报;2008年

7 见习记者 陈小妹;我市坛紫菜养殖出现大面积烂苗现象[N];闽东日报;2008年

8 许金练;厦门南方坛紫菜种质库建设获肯定[N];中国渔业报;2009年

9 霞浦记者站 欧招生;小企业获“三证” 产品走进大市场[N];闽东日报;2007年

10 黄俊加;浅海坛紫菜浮筏式养殖新模式[N];福建科技报;2006年

相关博士学位论文 前7条

1 陈斌斌;海洋酸化背景下经济海藻龙须菜与坛紫菜的生物学特性[D];华南理工大学;2015年

2 曹敏;坛紫菜基因组结构特征及红毛菜功能基因组特性分析[D];中国海洋大学;2015年

3 赵扬;坛紫菜转鲎素基因研究[D];厦门大学;2005年

4 王莉;坛紫菜响应失水胁迫的转录组和表达谱特征分析[D];中国海洋大学;2013年

5 姜红霞;坛紫菜对阳光紫外辐射的生理生态学响应[D];汕头大学;2007年

6 方永军;基于EST的超高产橡胶树胶乳基因表达谱分析及其高产机理探讨以及坛紫菜丝状孢子体基因表达分析[D];浙江大学;2008年

7 苗妍秀;黄瓜幼苗对红蓝光质响应的生理机制[D];中国农业大学;2015年

相关硕士学位论文 前10条

1 韩军军;光质对坛紫菜生长和生理学特性的影响及坛紫菜丝状体蓝光效应的转录组分析[D];上海海洋大学;2017年

2 王婷;坛紫菜新品系和重要农艺性状特异SCAR标记的开发[D];集美大学;2013年

3 李丹;坛紫菜固态发酵调味粉制备技术研究[D];福建农林大学;2015年

4 白露;坛紫菜多肽的分离纯化及其抗肿瘤活性研究[D];华南理工大学;2016年

5 翁琳;坛紫菜低温冷藏生物学效应的研究[D];集美大学;2007年

6 徐燕;坛紫菜诱变与杂交育种初步研究[D];集美大学;2007年

7 佘大为;抗生素对坛紫菜配子体生长和代谢的影响[D];辽宁师范大学;2007年

8 江浩;坛紫菜中重金属元素的检测方法和脱除技术研究[D];宁波大学;2009年

9 周巍巍;坛紫菜对低氮磷胁迫应答机制的初步研究[D];集美大学;2011年

10 丁仲仲;坛紫菜中重金属脱除技术研究[D];宁波大学;2014年



本文编号:1952509

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1952509.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户32340***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com