前后分置圆盘式覆土器的试验研究与仿真分析
本文选题:精密播种 + 前后分置 ; 参考:《吉林农业大学》2017年硕士论文
【摘要】:随着我国玉米种植技术和精密播种技术的迅速发展,精密播种机械各工作部件的设计和完善变得尤为重要,新装置、新原理在精密播种机具上的应用和开发也更加迫切。精密播种不仅需要排种器投种精确,在株距、行距、单粒播种方面达到精度要求,同时也要求影响种子分布均匀性以及播种深度一致性的覆土器在结构和性能方面满足要求,有利于种子初期的生长发育和后期的水肥汲取、光和作用等,有利于提高作物产量。基于降低覆土过程中土壤对种子的冲击、减小种子的位移、提高种子分布均匀性和覆土厚度一致性的目的,本文设计了一种前后分置圆盘式新型覆土器,使两组圆盘的覆土量等同于传统一组圆盘的覆土量,避免了一次性覆土量过大使种子产生较大位移的弊端,前端的一组小覆土盘先用少量潮湿土壤覆盖于种子表面,完成第一次覆土,再由后端的大覆土盘完成第二次覆土。由于第一次覆土时覆土量小,对种子冲击小,因而种子位移变化量小,而二次覆土过程中只会对一次覆土完成后形成的土壤表面产生冲击,种子不会发生位移,既满足了覆土厚度要求又改善了覆土质量,为种子萌发提了供良好的土壤环境,更适于精密播种的技术要求。本文运用SolidWorks软件建立了前后分置圆盘式覆土器的三维模型,利用有机玻璃等材料完成了覆土器实体的加工制作。按照均匀试验设计方法进行了前后分置圆盘式覆土器的土槽试验,通过对土槽试验的数据分析得出前后分置圆盘式覆土器的最优结构参数以及覆土厚度和种子位移的回归方程Y1和Y2:Y_1=58.5+0.4A+1.28B+0.7C+0.15D+0.15AB-0.44AC-0.25AD-0.42BC+0.18BD-0.21CD+0.3A~2-0.34B~2-0.009625C~2-0.6D~2Y_2=4.39+1.03A+0.25B+0.14C+0.14AB-0.22AC+0.0075BC-0.095A~2+0.047B~2+0.075C~2回归方程Y1中A、B、C、D分别代表小圆盘直径、大圆盘直径、覆土偏距、圆盘张角,回归方程Y2中A、B、C分别代表小圆盘直径、大圆盘直径、圆盘张角。本文运用EDEM离散元软件对最优覆土器的覆土过程进行仿真分析,仿真分析结果与土槽试验结果基本一致,验证了利用离散元软件进行覆土过程仿真分析的可行性,为精密播种机研究与设计提供了新方法,进一步丰富了精密播种技术与理论。
[Abstract]:With the rapid development of maize planting technology and precision seeding technology in China, the design and improvement of the working parts of precision seeding machinery becomes particularly important, and the application and development of new equipment and new principles in precision planter are more urgent. Precision seeding requires not only the precision of seeding device, but also the structure and performance of mulch, which affects the uniformity of seed distribution and sowing depth, and meets the requirements of precision in plant spacing, row spacing and single seeding. It is beneficial to the initial growth and development of seed, the absorption of water and fertilizer, light and effect, and the increase of crop yield. In order to reduce the impact of soil on seeds, reduce the displacement of seeds, and improve the uniformity of seed distribution and the consistency of soil thickness, a new type of soil cladding device was designed in this paper. The amount of soil covered by two groups of disks is equal to that of a traditional group of disks, which avoids the drawback that the amount of soil covering over the ambassadorial seed produces a large displacement at one time, and a group of small soil covers in the front end cover the surface of the seed with a small amount of wet soil first. Complete the first soil cover, and then the back end of the large earth cover plate to complete the second soil cover. Because of the small amount of soil covering and the small impact on the seed during the first time, the change of the displacement of the seed is small. However, in the process of the second soil covering, the surface of the soil formed after the completion of the first cover will only be impacted, and the seed will not shift. It not only meets the requirements of covering soil thickness but also improves the quality of soil covering. It provides a good soil environment for seed germination and is more suitable for precision seeding. In this paper, SolidWorks software is used to set up the three-dimensional model of the front and rear dissected disc cladding, and the processing and manufacture of the earth-cladding entity is accomplished by using organic glass and other materials. According to the uniform test design method, the soil trough test of the front and rear dissected disc cladding device was carried out. The optimum structural parameters and the regression equations Y1 and Y2:Y_1=58.5 0.4A 1.28B 0.7C 0.15D 0.15AB-0.44AC-0.25AD-0.42BC 0.18BD-0.21CD 0.3A~2-0.34B~2-0.009625C~2-0.6D~2Y_2=4.39 1.03A 0.25B 0.14C 0.14AB-0.22AC 0.0075BC-0.095A~2 0.047B~2 0.075C~2 regression equation Y1 and Y2:Y_1=58.5 0.4A 1.28B 0.7C 0.15D 0.15AB-0.44AC-0.25AD-0.42BC 0.18BD-0.21CD 0.3A~2-0.34B~2-0.009625C~2-0.6D~2Y_2=4.39 1.03A 0.25B 0.14C regression equation Y1 are obtained by analyzing the data of soil trough test. The diameter of the small disk is represented by the Agna Bu Con D, which is the diameter of the small disc. Large disc diameter, overlying offset, disc angle, and A _ (B) C in regression equation Y _ 2 represent small disc diameter, large disc diameter and disc angle respectively. In this paper, the EDEM discrete element software is used to simulate and analyze the soil overburden process of the optimal overburden. The simulation results are basically consistent with the results of the soil trough test, which verifies the feasibility of the simulation analysis of the soil covering process using the discrete element software. It provides a new method for the research and design of precision planter and further enriches the technology and theory of precision seeding.
【学位授予单位】:吉林农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S223.2
【参考文献】
相关期刊论文 前10条
1 黄闪闪;李江;朱瑞祥;付作立;翟长远;时永;;膜上移栽机穴覆土机构设计[J];农机化研究;2016年07期
2 纪超;陈学庚;陈金成;王士国;赫鹏亮;;玉米免耕精量播种机排种质量监测系统[J];农业机械学报;2016年08期
3 方自强;胡国明;李婉婉;刘丽萍;;挖掘机铲斗挖掘过程的DEM仿真分析[J];工程机械;2016年03期
4 崔红梅;陈福德;杜文亮;;可调窝眼式玉米精密排种器排种性能试验研究[J];农机化研究;2014年04期
5 崔红梅;陈福德;杜文亮;;气吸式玉米精密排种器排种性能试验研究[J];农机化研究;2014年03期
6 崔涛;刘佳;杨丽;张东兴;张瑞;蓝薇;;基于高速摄像的玉米种子滚动摩擦特性试验与仿真[J];农业工程学报;2013年15期
7 吉俊宝;樊启洲;张衍林;;基于微型开沟机的施肥覆土装置设计[J];华中农业大学学报;2013年04期
8 隋华;;玉米精密播种技术[J];天津农林科技;2013年03期
9 张继成;陈海涛;欧阳斌林;纪文义;;基于光敏传感器的精密播种机监测装置[J];清华大学学报(自然科学版);2013年02期
10 胡军;马旭;;基于ADAMS的精密播种机的运动仿真研究[J];中国农机化;2012年03期
相关博士学位论文 前4条
1 王景立;精密播种机覆土与镇压过程对种子触土后位置控制的研究[D];吉林大学;2012年
2 齐涛;中国玉米国际竞争力研究[D];西北农林科技大学;2011年
3 周海波;水稻秧盘育秧精密播种机的关键技术研究与应用[D];吉林大学;2009年
4 张锐;基于离散元细观分析的土壤动态行为研究[D];吉林大学;2005年
相关硕士学位论文 前8条
1 姜珊珊;基于离散元法的开沟器试验研究[D];吉林农业大学;2014年
2 心男;基于EDEM-FLUENT耦合的气吹式排种器工作过程仿真分析[D];吉林大学;2013年
3 李海燕;基于EDEM的垂直螺旋输送机性能参数仿真研究[D];太原科技大学;2011年
4 钱立彬;基于离散元法的开沟器的数字化设计方法研究[D];吉林大学;2008年
5 常在;土的颗粒力学理论及数值模拟[D];清华大学;2008年
6 郑送军;精密播种机排种器自动监测系统研究[D];西北农林科技大学;2007年
7 潘力;提升吉林省玉米产业竞争力的对策研究[D];中国农业科学院;2007年
8 金汉学;基于高速摄像技术的水稻芽播精密排种器研究[D];吉林大学;2004年
,本文编号:1978619
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1978619.html