铁对番茄幼苗生长的影响及其柠檬酸转运基因SlFRD3的克隆与分析
[Abstract]:Iron is an essential trace metal element involved in a series of life activities, such as respiration and photosynthesis, and it is very important for plants to play a normal physiological and metabolic function. Iron deficiency stress not only hinders plant growth, affects iron accumulation in grains, interferes with plant tolerance and adaptability to soil conditions, but also directly affects the iron nutrition level of human beings through the food chain. Understanding the iron metabolism balance in plants is the basis to solve the problem of iron deficiency in plants and solve the problem of planting. The problem of iron deficiency is also the key to improve iron nutrition of animals and humans.Tomato is an important vegetable crop widely cultivated all over the world.Therefore, the study of iron metabolism mechanism of tomato has become a hot topic in the plant field.The effects of different iron content nutrient solution on physiological and morphological indexes of tomato seedlings were studied. The results showed that the morphological and physiological indices of tomato seedlings were significantly different under different iron concentrations. Iron deficiency treatment (OmMEDTA-Fe) could significantly inhibit the growth of tomato seedlings, and the inhibition effect became more obvious with the increase of stress time; while iron deficiency treatment (200 mMEDTA-Fe) could significantly inhibit the growth of tomato seedlings compared with normal treatment (100 mMEDTA-Fe) and iron deficiency treatment (100 mMEDTA-Fe). In this study, the gene was cloned and identified by inquiring NCBI and designing specific primers according to the coding region of SlFRD3 gene. In this study, quantitative PCR was used to study the SlFRD in tomato roots, stems, leaves, flowers and fruits. The results showed that the expression of the gene in tomato root was the highest, followed by leaves, stems, mature fruits (38-40 days after anthesis), flowers, young fruits (8-10 days after anthesis), expanded fruits (28-30 days after anthesis), green fruits (18-20 days after anthesis); the expression of SlFRD3 in different parts of tomato was different under different iron concentrations with different treatment time. In roots, the expression of SlFRD3 gene increased with the increase of treatment time, which may be related to root growth. Compared with normal iron treatment, iron deficiency stress did not affect the expression of SlFRD3 gene, while iron stress promoted the expression of SlFRD3 gene in leaves. The expression of SlFRD3 gene increased within 8 hours after iron deficiency treatment, then decreased with the increase of iron deficiency treatment, increased slowly within 32 hours, decreased slowly from 32 hours to 72 hours, and increased again at 96 hours after iron deficiency treatment. The bioinformatics analysis of SlFRD3 protein showed that its molecular formula was C2613H4170N652 0703S21, its molecular weight was 566441D, its isoelectric point was 9.19, and it was a soluble protein; the signal-free peptide site, its stability coefficient was 29.38, it was a stable protein; the average hydrophilic coefficient was 0.652, there were 12 transmembrane domains, and it was a transmembrane protein. E (PF01554) (158-259,316-475) and a polysacc synt C (PF14667) (212-341) domain belong to the typical MATE family. The secondary structure of SlFRD3 protein was predicted to be 48.76% alpha-helix, 21.9%. The elongated chain, 8.95% beta-3-rotation, 20.38% random curl. Amino acid sequence alignment and evolutionary tree analysis revealed that tomato SlFRD3 and Panari were related to each other. The relative proteins of tomato, potato, pepper, tobacco, American flowering tobacco and pubescent tobacco are close, but they are far from the biological model crops such as rice and Arabidopsis. Amino acid sequence alignment is not a branch, suggesting that tomato SlFRD3 protein and Arabidopsis AtFRD3 protein, rice OsFRDL1 protein have been studied extensively. This study cloned a 1 831 BP promoter fragment of the SlFRD gene and constructed a PBl121-SlFRD3P fusion expression vector. Acting elements are located in the promoter region of the SlFRD3 gene. In addition to TATA-box, which can make transcription start accurately, and core promoter elements such as CAAT-box, which control the initiation frequency, there are also two stress-related elements involved in heat stress and stress resistance, and six hormone-related elements. They are involved in the reactions of jasmonic acid, ethylene, gibberellin and salicylic acid, as well as many tissue-specific elements, such as those involved in and regulating endosperm expression, and some of the largest activator-mediated activating elements, for further transformation to identify the subcellular localization of the SlFRD3 gene and the SlFRD3 group. It laid the foundation for the study of promoter regulation.
【学位授予单位】:沈阳农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S641.2
【相似文献】
相关期刊论文 前10条
1 宋秀华,王秀峰,魏珉;基质添加沸石对番茄幼苗营养状况及生长的影响[J];山东农业科学;2004年02期
2 江农旺;看苗相改进番茄幼苗管理技术[J];当代蔬菜;2004年09期
3 刘勋甲;;番茄幼苗碳水化合物与氮状态对新根产生的影响[J];长江蔬菜;1989年04期
4 张建民,韩晓弟,王刚,梁奉军;不同浓度的磁化水浇灌番茄幼苗生理指标的研究[J];中国农学通报;2002年03期
5 石英,徐晶宇,蔚变云,朱本忠,罗云波;盐胁迫对番茄幼苗中乙烯信号转导途径一些基因表达的影响[J];农业生物技术学报;2004年01期
6 宋秀华,王秀峰,臧金波,韩素芹;沸石添加对番茄幼苗素质的影响[J];中国蔬菜;2004年03期
7 丁海东,万延慧,齐乃敏,朱为民,邵耀椿;镉和锌对番茄幼苗抗氧化酶活性的影响[J];仲恺农业技术学院学报;2004年02期
8 樊怀福,蒋卫杰,郭世荣;低温对番茄幼苗植株生长和叶片光合作用的影响[J];江苏农业科学;2005年03期
9 赵国锦;张法琴;;优康唑浸种对番茄幼苗生理特性的影响[J];安徽农业科学;2006年01期
10 王振龙;陈凤玉;;S_(3307)浸种对番茄幼苗抗旱性的影响[J];北方园艺;2007年02期
相关会议论文 前10条
1 齐明芳;李天来;许涛;蒋青青;张娇;;钙对亚高温逆境下番茄幼苗的调控作用[A];庆祝中国园艺学会创建80周年暨第11次全国会员代表大会论文摘要集[C];2009年
2 胡立盼;曹凯;邹志荣;;不同强度远红光和红光对番茄幼苗节间生长的影响[A];2013中国园艺学会设施园艺分会学术年会·蔬菜优质安全生产技术研讨会暨现场观摩会论文摘要集[C];2013年
3 须晖;李天来;郭泳;陈伟之;杨丽娟;鄂文伟;;番茄幼苗体内激素含量与畸形果发生的关系[A];中国园艺学会第四届青年学术讨论会论文集[C];2000年
4 路涛;刘玉凤;李天来;;不同光强对番茄幼苗光合作用和叶绿素荧光参数的影响[A];中国园艺学会2013年学术年会论文摘要集[C];2013年
5 李建明;刘国英;;不同氮素形态对亚低温下番茄幼苗光合特性、渗透调节物质以及抗氧化酶活性的影响[A];2013中国园艺学会设施园艺分会学术年会·蔬菜优质安全生产技术研讨会暨现场观摩会论文摘要集[C];2013年
6 张晓飞;潘小兵;田永强;高丽红;;炼苗期基质相对含水量对番茄幼苗贮运特性的影响[A];2013中国园艺学会设施园艺分会学术年会·蔬菜优质安全生产技术研讨会暨现场观摩会论文摘要集[C];2013年
7 齐明芳;刘玉凤;李天来;范永怀;张克敏;;钙对亚高温下番茄幼苗叶片光合作用的调控[A];中国园艺学会2010年学术年会论文摘要集[C];2010年
8 赵冰;王学文;郭仰东;;弱光和干旱逆境对番茄幼苗形态特征及生理生化的影响[A];中国园艺学会2011年学术年会论文摘要集[C];2011年
9 陈启林;徐春和;;光敏素对番茄幼苗胚轴长度和花青素合成的控制[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
10 李天来;张振武;;番茄幼苗体内的成分与子房心室形成的关系[A];中国园艺学会成立六十周年纪念暨第六届年会论文集(Ⅱ蔬菜)[C];1989年
相关重要报纸文章 前5条
1 程伯瑛;番茄幼苗为什么会死[N];瓜果蔬菜报.农业信息周刊;2005年
2 山西省农科院蔬菜研究所 程伯瑛;怎样避免番茄幼苗出现黑褐色病斑[N];瓜果蔬菜报.农业信息周刊;2006年
3 青岛农业大学植物病虫害研究防治中心 张立宁;番茄果籽粒外露咋回事[N];河北科技报;2008年
4 青岛农业大学 张立宁;番茄子粒外露的原因及防治[N];河北科技报;2012年
5 魏晋;番茄子粒外露应如何防治[N];农民日报;2012年
相关博士学位论文 前6条
1 宋永骏;多胺在番茄幼苗耐低温胁迫中的调控作用[D];沈阳农业大学;2014年
2 崔丽荣;24-表油菜素内酯缓解低温弱光对设施番茄幼苗伤害的研究[D];西北农林科技大学;2016年
3 吴雪霞;外源一氧化氮对盐胁迫下番茄幼苗生理特性影响的研究[D];南京农业大学;2007年
4 张毅;亚精胺对番茄幼苗盐碱胁迫的缓解效应及其调控机理[D];西北农林科技大学;2013年
5 李益清;弱光影响番茄光合特性的钙素调控机理研究[D];沈阳农业大学;2011年
6 张春梅;外源亚精胺对干旱胁迫下番茄(Lycopersicon esculentum M.)幼苗的缓解效应及机理研究[D];西北农林科技大学;2009年
相关硕士学位论文 前10条
1 何晓玲;外源硒对NaCl胁迫下加工番茄幼苗光合碳同化的影响[D];石河子大学;2015年
2 杜清洁;亚低温和水分对番茄幼苗形态及生理特性的影响[D];西北农林科技大学;2015年
3 刘建龙;外源褪黑素对干旱胁迫下番茄抗氧化系统及产量和果实品质的影响[D];西北农林科技大学;2015年
4 李换丽;硅对番茄幼苗抗盐性的影响及机理初探[D];西北农林科技大学;2015年
5 尹婷;弱光对双色木番茄幼苗生长及生理特性的影响[D];广西大学;2015年
6 侯丽丽;UV-B辐射对番茄幼苗素质的影响[D];山东农业大学;2015年
7 李艳军;番茄硫化氢合成酶基因OASTL/LCD的克隆及硫化氢介导一氧化氮诱导番茄幼苗侧根发育研究[D];南京农业大学;2014年
8 杨小龙;LED光照及褪黑素引发对番茄幼苗光抑制的调节[D];沈阳农业大学;2016年
9 张冬野;外源水杨酸和氯化钙对番茄抗旱性及差异基因表达的影响[D];东北农业大学;2016年
10 尹松松;外源ABA对番茄幼苗抗冷性影响的研究[D];东北农业大学;2016年
,本文编号:2183608
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/2183608.html