连作甜瓜土壤中酚酸类物质的变化规律和木霉菌降解作用研究
[Abstract]:Melon (Cucumis sativus L.) Also known as cantaloupe, is an important cash crop in Northeast China. In recent years, muskmelon has developed rapidly in Northeast China. The root exudates of muskmelon and the residue decomposition of plant diseases are one of the important reasons of crop continuous cropping obstacle. In this paper, the phenolic acids in muskmelon continuous cropping soil were detected by high performance liquid chromatography (HPLC), and the composition and variation of phenolic acids in muskmelon continuous cropping soil were determined. In addition, the dominant Trichoderma species were selected from the soil of muskmelon to degrade phenolic acids, which provided scientific basis for alleviating the obstacle of continuous cropping of muskmelon. 1. High performance liquid chromatography (HPLC) was used to analyze and identify the phenolic acid species and their contents in the soil of cantaloupe. The results showed that the contents of p-hydroxybenzoic acid, vanillic acid, eugenic acid, vanillin, coumaric acid, ferulic acid and benzoic acid increased with the increase of continuous cropping time, but the content of cinnamic acid decreased gradually. After 4 years of continuous cropping, the total amount of 8 phenolic acids reached 257.94 mg kg-1 dry soil, which was significantly higher than that of non-continuous cropping soil. With the increase of planting years of simulated continuous cropping in pot plant, soil-borne diseases such as melon wilt occurred seriously, plant growth was inhibited, fruit yield decreased obviously, and continuous cropping obstacles became more and more serious. In addition, the soil samples of muskmelon in three provinces of Northeast China were analyzed and identified. The contents of 6 phenolic acids, such as p-hydroxybenzoic acid and vanillic acid, were significantly different. 2. The dominant Trichoderma species in continuous cropping soil of muskmelon in Northeast China were selected. In this experiment, 124 muskmelon continuous cropping soils were collected, 66 strains of Trichoderma strains were screened, accounting for 53.23% of the total, 31 strains of Trichoderma strains were isolated in Heilongjiang region, the number and frequency of isolation were higher than those in Jilin and Liaoning regions. TQTH-03 and TSY-02 dominant Trichoderma strains were screened from SA medium containing root exudates of muskmelon. The degradation system of phenolic acid in muskmelon continuous cropping soil was established, and the degradation effect of Trichoderma on the main phenolic acid in muskmelon continuous cropping soil was determined. The degradation of phenolic acids in muskmelon rhizosphere soil by Trichoderma (T4T23T23TQTH-03 TSY-02) was determined by three different inoculation methods with exogenous spore suspension, PD suspension and wheat bran fermentation. The results showed that Trichoderma could effectively degrade the phenolic acid accumulated in soil, and the degradation rate of wheat bran fermentation could reach more than 25%, and the degradation effect was the most remarkable. Soil samples were degraded by Trichoderma (T4T23T23TQTH-03TSY-02) inorganic salt fermentation broth and PD fermentation broth. The results showed that the degradation rate of the main phenolic acids in muskmelon was above 20%, and the degradation effect was remarkable. Trichoderma (T4T23TQTH-03TSY-02) inorganic salt spore suspension solution was used to degrade the main eight phenolic acids in muskmelon soil. The quantitative analysis showed that Trichoderma had a good degradation effect, and the degradation ability of Trichoderma was low at high concentration. The degradation rate is high at low concentration. 4. 4. The field experiments were carried out with Trichoderma and bio-fertilizer as cultivation substrates to provide a theoretical basis for solving the problems of continuous cropping of muskmelon. The results showed that the incidence of muskmelon treated with Trichoderma was lower than that of the control, which was beneficial to enhance the growth and disease resistance of muskmelon plants and alleviate the continuous cropping obstacle.
【学位授予单位】:沈阳农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S652;S153
【相似文献】
相关期刊论文 前10条
1 赵世波;高增贵;高军;庄敬华;;设施土壤状况及生防木霉菌应用的研究[J];北方园艺;2006年01期
2 孙军;段玉玺;吕国忠;;辽宁木霉菌物种多样性资源初探[J];安徽农业科学;2006年17期
3 李梅;;木霉菌在生防上的应用[J];农技服务;2009年09期
4 于浩龙;赵樟;刘云;卢立华;;广西林区木霉菌多样性调查[J];西北林学院学报;2012年02期
5 茆振川;木霉菌在果树生防中的应用进展[J];河北果树;1995年04期
6 詹晓奂;申屠旭萍;刘卫平;马正;俞晓平;;脐孢木霉菌Trichoderma brevicompactum 0248 tri5基因片段的克隆及表达分析[J];中国生物防治学报;2013年04期
7 周红姿,李宝聚,刘开启;抗药性木霉菌研究进展[J];北方园艺;2003年06期
8 李雪玲,刘慧,张天宇;三株木霉生防菌的生物学特性研究[J];山东农业大学学报(自然科学版);2003年01期
9 蒋家珍,吴学民,高群,王维波,王成菊;木霉菌对3种致病真菌的作用关系研究[J];微生物学杂志;2004年05期
10 于晓丹,李刚,张彩霞,林英,吕淑霞,刘晓丽;木霉生防机制的研究进展[J];杂粮作物;2004年06期
相关会议论文 前10条
1 李广记;刘力行;陈捷;;华东地区木霉菌资源鉴定与多态性研究[A];公共植保与绿色防控[C];2010年
2 李广纪;刘力行;陈捷;;华东地区木霉菌资源鉴定与多态性研究[A];中国植物病理学会2010年学术年会论文集[C];2010年
3 王浩然;田云龙;蒋细良;郭萍;朱昌雄;;木霉菌分子生物学研究进展[A];农业生物灾害预防与控制研究[C];2005年
4 陈捷;;木霉菌功能改良分子基础研究[A];植物保护科技创新与发展——中国植物保护学会2008年学术年会论文集[C];2008年
5 曾华兰;叶鹏盛;刘朝辉;何炼;韦树谷;张骞方;李琼英;;木霉菌生物制剂对川芎生长及品质的影响[A];植保科技创新与病虫防控专业化——中国植物保护学会2011年学术年会论文集[C];2011年
6 孙瑞艳;陈捷;;中国南部地区木霉菌种类多样性[A];植保科技创新与病虫防控专业化——中国植物保护学会2011年学术年会论文集[C];2011年
7 孙瑞艳;刘志诚;陈捷;;中国南部木霉菌种质多样性调查及资源库构建[A];中国植物病理学会2012年学术年会论文集[C];2012年
8 朱衍杰;张秀省;穆红梅;;木霉多肽对国槐种子萌发实验的研究[A];山东植物生理学会第七次代表大会暨植物生物学与现代农业研讨会论文集[C];2012年
9 熊敏;陈捷;;华东地区木霉菌资源几丁质酶基因多态性研究[A];公共植保与绿色防控[C];2010年
10 王秉丽;刘力行;陈捷;;多功能木霉菌菌剂创制与土壤生态效益初步分析[A];中国植物病理学会2010年学术年会论文集[C];2010年
相关重要报纸文章 前10条
1 李肖忠;木霉菌咋防治[N];山西科技报;2004年
2 河南省科学院生物研究所 申时文 程雁;木霉菌病害的发生及防治[N];河南科技报;2001年
3 ;香菇生产中如何控制木霉的发生?[N];东方城乡报;2008年
4 田静;香菇木霉的防治[N];农民日报;2005年
5 李娜;香菇木霉的防治[N];农民日报;2005年
6 ;香菇木霉的危害与防治[N];云南科技报;2005年
7 崔磊;香菇木霉的防治[N];河南科技报;2007年
8 于洋;木霉菌—油菜联合代谢作用控制农田土壤重金属污染机理[N];科技日报;2007年
9 梁晨虎;香菇木霉菌的防治[N];山西科技报;2005年
10 李文博;香菇木霉菌的防治[N];瓜果蔬菜报.农业信息周刊;2008年
相关博士学位论文 前9条
1 程鹏;钩状木霉抑菌作用的比较基因组学和蛋白质组学研究[D];湖南农业大学;2015年
2 杨东清;根际有益芽孢杆菌和木霉的基因组分析及芽孢杆菌在根际适应过程中的演化特征[D];南京农业大学;2015年
3 姜兴印;抗药木霉菌高效生防菌株生物学及其制剂加工技术[D];山东农业大学;2006年
4 罗赫荣;生防木霉菌对土著根瘤菌固氮活性及遗传多样性影响的研究[D];湖南农业大学;2007年
5 王允;棘孢木霉和球毛壳菌免疫诱导蛋白及其功能研究[D];哈尔滨工业大学;2013年
6 刘路宁;绿木霉(TRICHODERMA VIRENS)TY009菌株胶霉毒毒素分离纯化及绿色荧光蛋白标记研究[D];浙江大学;2008年
7 董小卫;利用木霉和RNAi技术提高烟草抗性和品质的研究[D];山东师范大学;2010年
8 罗琰;康宁霉素抗烟草花叶病毒活性及其调控拟南芥根系生长的机制[D];山东大学;2010年
9 张健;桑椹防腐技术研究和桑树果用性状关联分析[D];江苏科技大学;2017年
相关硕士学位论文 前10条
1 赵永强;木霉菌对大豆根腐病菌的生防机制及其制剂的初步研究[D];黑龙江八一农垦大学;2010年
2 朱萍萍;蔬菜重要土传病害生防木霉菌资源鉴定筛选及利用评价[D];中国农业科学院;2015年
3 孟文文;南宁市郊平菇主要病害病原鉴定及生物防治[D];广西大学;2015年
4 张建华;长枝木霉T6发酵条件优化、抑菌活性成分分析及其杀线作用测定[D];甘肃农业大学;2015年
5 颜玉兰;产木聚糖酶木霉菌株固态发酵条件研究[D];江西农业大学;2012年
6 宋银平;海洋藻栖木霉次生代谢调控的研究[D];中国科学院烟台海岸带研究所;2016年
7 景芳;生防菌长枝木霉T6发酵条件优化、剂型研制及促生防病作用研究[D];甘肃农业大学;2016年
8 姜远;浙皖苏鲁晋五省农田生态系统木霉菌多样性及其农业功能评价[D];浙江大学;2016年
9 林润泽;东北农田木霉菌的鉴定、酶活评价及其纤维素酶发酵工艺[D];沈阳农业大学;2016年
10 涂广平;木霉菌颗粒剂TCF和种衣剂XDS防治玉米几种土传病害的应用研究[D];沈阳农业大学;2016年
,本文编号:2307866
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/2307866.html