照片与视频的拼贴图组成研究与实现
发布时间:2018-04-03 17:17
本文选题:图像浏览 切入点:照片拼贴 出处:《哈尔滨工业大学》2013年硕士论文
【摘要】:数码照片和视频数据的急剧增长需要既能支持速度快又能支持内容形象化浏览的表达技术。随着图像文件数量的爆炸式增长,管理大量图像的内容的能力已成为一项关键技术。 一种最有效且视觉上有吸引力的图像浏览技术是基于拼贴的表达。拼贴表示的是一个图像库或视频材料,作为有意义的快照集合,它允许对库的内容进行概述。 自动拼贴设计在很多应用中,从家庭拼贴的设计到商业广告项目,都是非常普遍的任务。 在我们的研究中,我们提出了两种自动拼贴图组成方法:基于ROI形状估计的方法和基于ROI自适应块分析的方法。 首先提出的基于ROI形状估计的方法与国际现有技术具有相近的组成性能、信息和美学价值。 改进的基于ROI自适应块分析的方法比现有技术效果好。根据一系列实验分析和基于社会网络的调查(多达300个受访者进行评估),,完成拼贴图组成的整个过程(包括帧选择、分配和ROI近似)的平均时间为17.98秒。生成布局的多样性为81.16%,伴随着空区域为稳定的0%级;ROI近似的准确率为86.08%;整个输出的拼贴的信息价值和美学价值分别估计为90.25%和90.83%。 基于ROI自适应块分析的方法比Autocollage大约快4秒,并且输出的拼贴比Autocollage高出5%的信息价值和10%的美学价值。 我们提出的方法既可以用于管理图像库,也可以用于管理视频材料,并且能够编辑更特殊的输出拼贴。
[Abstract]:The rapid growth of digital photo and video data requires representation techniques that can support both fast and visualized browsing of content.With the explosive growth of the number of image files, the ability to manage the content of a large number of images has become a key technology.One of the most effective and visually attractive image browsing techniques is collage based expression.Collage represents an image library or video material that allows an overview of the contents of the library as a meaningful collection of snapshots.Automatic collage design is a common task in many applications, from home collage design to commercial advertising projects.In our research, we propose two automatic mapping methods: one based on ROI shape estimation and the other based on ROI adaptive block analysis.First, the proposed method based on ROI shape estimation has similar composition performance, information and aesthetic value to the existing international technology.The improved method based on ROI adaptive block analysis is more effective than the existing technology.According to a series of experimental analyses and social network-based surveys (up to 300 respondents were evaluated, the average time to complete the whole process of mapping (including frame selection, allocation and ROI approximation) was 17.98 seconds.The diversity of the generated layout is 81.16, and the accuracy of the approximation is 86.08 with a stable 0% ROI of empty area, and the information value and aesthetic value of the whole output collage are estimated to be 90.25% and 90.833%, respectively.The adaptive block analysis method based on ROI is about 4 seconds faster than Autocollage, and the output collage is 5% higher information value and 10% higher aesthetic value than Autocollage.The proposed method can be used to manage both image libraries and video materials, and to edit more special output collages.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP391.41
【共引文献】
相关硕士学位论文 前1条
1 岑磊;基于个性化推荐的图像浏览与检索相关方法研究[D];复旦大学;2011年
本文编号:1706152
本文链接:https://www.wllwen.com/wenyilunwen/guanggaoshejilunwen/1706152.html