上海市地表水体中多环芳烃与多氯联苯的环境行为与风险研究
本文选题:多环芳烃 + 多氯联苯 ; 参考:《华东师范大学》2017年博士论文
【摘要】:多环芳烃(PAHs)和多氯联苯(PCBs)是两类典型的具有致癌、致畸和致突变的持久性有机污染物(POPs),可通过多种环境介质进行长距离迁移,且对人类健康和环境安全具有严重危害。地表水体是PAHs、PCBs等污染物的重要的环境受体,因此研究PAHs、PCBs在典型地表水体中的暴露水平、环境行为及其造成的环境风险具有重要的理论和现实意义。本研究在国家自然科学基金项目(No.41271472)、上海市科委社会发展重点项目(No.12231201900)的资助下,利用气相色谱法/质谱联用技术(GC/MS)测定了上海市河网、滴水湖及其环湖水系水、沉积物中PAHs、PCBs的暴露浓度,运用统计学和GIS等方法分析了 PAHs和PCBs的污染水平与时空分布规律,利用冗余分析(RDA)等方法探讨了 PAHs和PCBs的污染分布及分配行为与环境因子间的耦合关系,综合主成分分析(PCA)、绝对主成分/多元线性回归(APCS/MLR)及正定矩阵因子分解(PMF)等方法对比分析了其来源与来源贡献率。在此基础上,基于景观用水用途的暴露情境,分析了 PAHs、PCBs对上海市成人、儿童造成的致癌性健康风险和非致癌性健康风险,结合美国国家环境保护局(USEPA)推荐的定量结构-活性相关模型(QSAR)(ECOSAR)和北京大学开发的基于贝叶斯理论的风险评估模型(BMC-SSD)推导了符合研究区水系、水体特征的水生生物预测无效应浓度(PNEC),并利用商值法对其生态风险水平进行了表征。得出的主要结论如下:(1)研究区表层水、沉积物中16种PAHs整体处于轻微至中度污染水平,各相中PAHs均以3~5环成分为主,含量较高的单体有Phe、Ant和Flua。表层水中PCBs为轻中度污染,而沉积物中PCBs为轻微污染,各相中PCBs均以五氯联苯为主,主要的特征单体为PCB118、PCB105和PCB77。受河道水动力条件较弱、黑臭现象较严重等因素影响,中心城区以及城镇居民区河网水体中PAHs、PCBs污染相对严重。滴水湖环湖水系水体中的PAHs、PCBs含量普遍高于湖区。除秋季沉积物中的PCBs外,冬季表层水中的PAHs和PCBs均显著高于其他季节。(2)"盐析效应"、水质现状、总悬浮颗粒物(TSS)和溶解性有机质(DOC)是影响水中PAHs、PCBs分布的重要因素。沉积物中PAHs分布受沉积物的机械组成和碳黑(SC)影响显著,PCBs分布则受SC、TOC影响显著。水温、盐度及水中的TSS、DOC对PAHs、PCBs在颗粒物-水间的分配行为影响较大。PAHs、PCBs的沉积物-水分配行为均受沉积物机械组成影响显著,SOC及TOC含量对PAHs的沉积物-水分配行为影响显著,但对PCBs的影响不显著。现场数据较好地拟合了沉积物-水中PAHs的分配行为,但并不能很好地拟合沉积物-水中PCBs的分配行为。(3)正定矩阵分解法(PMF)较之主成分分析法(PCA)和绝对主成分/多元线性回归法(APCS/MLR)对PAHs源解析的结果更全面,源解析结果表明研究区地表水中PAHs主要来自于煤、薪柴和天然气等燃烧源以及焦化源排放,而沉积物中的PAHs受交通源的贡献最高,其次为燃烧源和焦化源。PCA法及PMF法均区分出了 PCBs的4类源,但贡献率计算结果存在一定差异。总体而言,研究区地表水体中PCBs主要来自国产PCB工业品的使用残留,但也受再生金属加工行业排放以及国外PCB产品的使用残留与远距离输送影响。(4)河网水体中PAHs、PCBs的成人的总致癌风险水平已超过了最大可接受致癌风险水平,儿童仅除崇明岛及农业区部分点位外,其他点位的总致癌风险也均超过了最大可接受风险水平。对于滴水湖及其环湖水系水体中PAHs、PCBs,仅有9.3%的点位成人总致癌风险及18.67%的点位儿童总致癌风险处于可接受水平。皮肤接触是景观用水暴露情境中PAHs、PCBs致癌风险的主要暴露途径,但不会造成明显的非致癌健康伤害。(5)利用ECOSAR及BMC-SSD模型推导的预测无效应浓度(PNEC)与其他研究具有较好的可比性。研究区存在较高生态风险水平的PAHs单体主要有水中的苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、BghiP以及沉积物中菲(Phe)、荧蒽(Flua)和芘(Pyr),存在高生态风险水平的PAHs单体主要为Phe、蒽(Ant)、窟(Chry)、Flua和Pyr。水体中具有高生态风险水平的DL-PCBs单体主要为溶解态中的PCB105、颗粒态中的PCB118、PCB105和PCB77。
[Abstract]:Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are two types of typical carcinogenic, teratogenic and mutagenic persistent organic pollutants (POPs), which can carry long distance migration through a variety of environmental mediums, and have serious harm to human health and environmental safety. Surface water is an important environmental receptor for PAHs, PCBs and other pollutants. Therefore, the study of PAH The exposure levels of S, PCBs in typical surface waters, environmental behavior and environmental risks are of great theoretical and practical significance. Under the support of the National Natural Science Foundation (No.41271472) and the key social development project (No.12231201900) of the Shanghai Municipal Science and Technology Commission (No.12231201900), this study was determined by gas chromatography / mass spectrometry (GC/MS). The pollution level and spatio-temporal distribution of PAHs and PCBs were analyzed by statistics and GIS, and the pollution distribution of PAHs and PCBs and the coupling relationship between the distribution behavior and environmental factors were discussed by the methods of redundancy analysis (RDA) and so on. The pollution distribution of PAHs and PCBs were analyzed by the methods of statistics and GIS, and the pollution levels of PAHs and PCBs in the sediments and the exposure concentration of the sediments were analyzed. Principal component analysis (PCA), absolute principal component / multivariate linear regression (APCS/MLR) and positive definite matrix factorization (PMF) were used to compare their source and source contribution rates. Based on the exposure scenarios of landscape water use, the carcinogenic health risks and non carcinogenic health risks caused by PAHs and PCBs for children in Shanghai City were analyzed. Combined with the quantitative structure activity correlation model (QSAR) (ECOSAR) recommended by the national environmental protection agency of the United States (USEPA) and the Bayesian based risk assessment model (BMC-SSD) developed by the Peking University (BMC-SSD), this paper derives the ineffective stress concentration (PNEC) of aquatic organisms in accordance with the water system and water characteristics in the study area, and uses the quotient method for its ecological wind. The main conclusions are as follows: (1) the surface water of the study area, 16 kinds of PAHs in the sediments are in the mild to moderate pollution level, and the PAHs in each phase is dominated by 3~5 ring components, the monomer with higher content is Phe, the PCBs in the surface water of Ant and Flua. is light medium pollution, and the PCBs in the sediments is slightly polluted and PCBs in each phase. The main characteristics are five chlorinated biphenyls, the main characteristic monomers are PCB118, PCB105 and PCB77. are influenced by the weak river hydrodynamic conditions and the serious black odor. The pollution of PAHs in the river net water of the central urban area and the urban residential area is relatively serious. The PAHs in the water system of the drip lake lake water system is generally higher than that in the lake area. Except for the autumn deposition, the content of PCBs is generally higher than that in the lake area. The PAHs and PCBs in surface water in winter are significantly higher than those of other seasons. (2) "salting out effect", water quality, total suspended particles (TSS) and dissolved organic matter (DOC) are important factors affecting the distribution of PAHs and PCBs in water. The PAHs distribution in the sediments is influenced significantly by the mechanical composition of the sediments and the carbon black (SC), while PCBs distribution is SC, TO. The effect of C on water temperature, salinity and TSS in water, DOC to PAHs, PCBs in the distribution of particles and water has great influence on.PAHs, and the sediment water distribution behavior of PCBs is greatly influenced by the mechanical composition of sediment, SOC and TOC content has a significant influence on the sediment water distribution behavior of PAHs, but the effect on PCBs is not significant. Field data is well proposed. The distribution behavior of PAHs in sediment water can not be well fitted to the distribution behavior of PCBs in the sediment water. (3) the positive definite matrix decomposition (PMF) is more comprehensive than the principal component analysis (PCA) and the absolute principal component / linear regression (APCS/MLR) for the analysis of PAHs source. The source analysis results show that the PAHs master in the surface water of the study area is dominant. It is derived from coal, firewood, natural gas and other combustion sources, as well as the source of coking source, and the PAHs in the sediment is the highest contribution to the traffic source. Secondly, the 4 sources of PCBs are separated from the combustion source, the focal.PCA method and the PMF method, but the calculation results of the contribution rate are different. In general, the PCBs in the surface water of the study area is mainly from the domestic PC. The use of B industrial products remains, but it is also affected by regenerated metal processing industry emissions and the use of residual and remote delivery of foreign PCB products. (4) the total cancer risk level for adults of PAHs, PCBs in river network waters has exceeded the maximum acceptable level of carcinogenic risk. Children are only in addition to some points in Chongming Island and agricultural areas, and the total number of other points. The risk of carcinogenesis also exceeded the maximum acceptable risk level. For PAHs, PCBs, only 9.3% of the total oncogenic risk and 18.67% of the total oncogenic risk of children in the water drops lake and its lake water system, skin contact is the main way of exposure of PAHs, PCBs cancer risk in the landscape water exposure situation, but not (5) the predicted ineffective concentration (PNEC) derived from the ECOSAR and BMC-SSD models has better comparability with other studies. The high ecological risk levels of PAHs monomers in the study area are mainly benzene and [b] fluoranthene (BbF), benzo [k] fluoranthene (BkF), BghiP, and phenanthrene (Phe), fluoranthene (F). Lua) and pyrene (Pyr), the PAHs monomers with high ecological risk level are mainly Phe, anthracene (Ant), grottoes (Chry), and DL-PCBs monomers with high ecological risk in Flua and Pyr. water bodies are mainly PCB105 in the dissolved state, PCB118, PCB105 and minerals in the granular state.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:X52
【参考文献】
相关期刊论文 前10条
1 王敏;王卿;苏敬华;黄宇驰;白杨;吴健;阮俊杰;王贺亚;姚佳;邵蕾;;上海生态环境容量、发展趋势与生态城市建设[J];科学发展;2017年02期
2 刘群;王咏笑;王梦珂;;上海市常住人口增长趋势研究:基于劳动年龄人口的情景模拟[J];世界地理研究;2016年03期
3 曹巍;乔梦;张一心;刘博川;;典型污水处理厂对多环芳烃及其衍生物的去除及再生水健康风险研究[J];生态毒理学报;2016年03期
4 王薛平;黄星;毕春娟;贾晋璞;郭雪;陈振楼;;滴水湖及其环湖水系沉积物、土壤中多氯联苯的空间分布特征及风险评价[J];环境科学;2016年06期
5 袁宏林;范雅文;王晓昌;;西安市城区持久性有机污染物的干湿沉降[J];环境工程学报;2016年03期
6 李娟英;石文tD;崔昱;李润奇;;滴水湖水体及沉积物中重金属和多环芳烃的污染分析与评价[J];生态与农村环境学报;2016年01期
7 温玲;徐建平;;EPA PMF5.0在浦东新区降水源解析中的使用研究[J];环境科学与管理;2016年01期
8 刘金金;孙振中;张玉平;晏军;李晓蓓;廖德丰;;上海滴水湖水环境容量的估算[J];海洋湖沼通报;2015年04期
9 贾晋璞;王薛平;毕春娟;郭雪;陈振楼;;滴水湖及其鲫鱼体内PAHs分布特征与影响因素分析[J];中国环境科学;2015年11期
10 刘伟亚;刘敏;杨毅;陆敏;侯立军;于英鹏;汪青;;上海市多环芳烃排放清单构建及排放趋势预测[J];长江流域资源与环境;2015年06期
相关会议论文 前2条
1 冀健;宋双辉;;我国城市水污染探析[A];生态安全与环境风险防范法治建设——2011年全国环境资源法学研讨会(年会)论文集(第二册)[C];2011年
2 王斌;余刚;黄俊;邓述波;胡洪营;;POPs生态风险评价体系和模式初探[A];持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集[C];2008年
相关博士学位论文 前10条
1 金香琴;多环芳烃胁迫对淡水生物种群生长及种间关系的影响及其生态风险评价[D];东北师范大学;2014年
2 段晓勇;黄、东海沉积物中多氯联苯的分布及来源[D];中国海洋大学;2014年
3 蓝家程;岩溶地下河系统中多环芳烃的迁移、分配及生态风险研究[D];西南大学;2014年
4 蔡文良;嘉陵江重庆段多环芳烃及溶解性有机质的污染特征及源解析[D];重庆大学;2012年
5 魏巍;多氯联苯与苯并芘联合作用对机体损伤修复及遗传稳定的影响研究[D];华中科技大学;2010年
6 张蓬;渤黄海沉积物中的多环芳烃和多氯联苯及其与生态环境的耦合解析[D];中国科学院研究生院(海洋研究所);2009年
7 田福林;受体模型应用于典型环境介质中多环芳烃、二VA英和多氯联苯的来源解析研究[D];大连理工大学;2009年
8 王震;辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险[D];大连理工大学;2007年
9 欧冬妮;长江口滨岸多环芳烃(PAHs)多相分布特征与源解析研究[D];华东师范大学;2007年
10 李竺;多环芳烃在黄浦江水体的分布特征及吸附机理研究[D];同济大学;2007年
相关硕士学位论文 前10条
1 黄雨生;基于北京和上海的超大城市环境污染经济损失核算及其影响因素分析[D];兰州大学;2016年
2 郭雪;上海市郊区土壤—蔬菜系统中多环芳烃污染效应研究[D];华东师范大学;2015年
3 周瑞媛;水源水库底泥磷及重金属迁移转化规律研究[D];西安建筑科技大学;2014年
4 梅卫平;滴水湖水系表层沉积物中多环芳烃和多氯联苯分布特征与风险评价[D];上海海洋大学;2014年
5 肖杰;溶解性有机质对多环芳烃光解的影响机制[D];大连理工大学;2013年
6 韩景超;上海市河网中多环芳烃(PAHs)赋存水平及其面源污染特征[D];华东师范大学;2013年
7 张海波;粉末活性炭对水中PCBs的吸附性能及主要影响因素研究[D];哈尔滨工业大学;2011年
8 周扬;滴水湖引水河水体生物修复技术研究[D];华东师范大学;2011年
9 冯亚静;郑州市城市污水回用的健康风险评价[D];郑州大学;2011年
10 王华新;长江口环境变化及表层沉积物中总有机碳、总氮的时空分布[D];中国科学院研究生院(海洋研究所);2010年
,本文编号:2094909
本文链接:https://www.wllwen.com/wenyilunwen/huanjingshejilunwen/2094909.html