当前位置:主页 > 医学论文 > 病理论文 >

大鼠骨髓基质细胞在体外条件诱导下向Schwann细胞分化的基础研究

发布时间:2018-07-21 14:40
【摘要】: 迄今为止,周围神经缺损的修复仍然是临床外科领域尚待解决的疑难问题之一。如果两断端距离过远则影响再生轴突的生长。临床上常用神经移植进行修补,虽然传统的自体神经移植方法效果最好,但因为材料来源的限制而制约了它的应用范围;而同种异体神经移植又由于免疫排斥、移植成功率低等原因而难以推广。20世纪以来,神经组织工程研究的发展,尤其是由支架材料和细胞外基质、种子细胞以及诱导和促进生长的因子等几个部分组成的“组织工程神经”的构建为人们寻找神经代用品修复周围神经缺损带来了新的希望。 Schwann细胞是神经组织工程中最重要、也是最常使用的种子细胞。但由于自体Schwann细胞来源有限且不容易增殖;而异体的Schwann细胞又会引起免疫排斥反应,因此将Schwann细胞化的“组织工程神经”应用于临床的研究仍遇到难以逾越的障碍。骨髓基质细胞(bone marrow stromal cells MSCs)因取材方便,来源广泛,在一定培养条件下可迅速大量扩增,具有自我更新、活跃增殖和多向分化潜能,且自体移植克服了伦理和免疫排斥等问题,作为一种理想的种子细胞脱颖而出。 近年来一些在体外的研究证明MSCs在给予合适的诱导条件下,可以表达神经元的标记。这些研究表明MSCs在诱导分化后形态上发生了类似神经元的形态变化并且可以表达神经细胞的特异性蛋白,所以这些研究者认为是MSCs向神经细胞发生了转分化。但是也有持不同观点的报道,有研究者认为MSCs在体内的分化是与宿主的神经系细胞发生融合的过程。有的研究认为MSCs并没有真正的分化,而细胞形态的改变仅是由于诱导剂的化学性刺激的作用引起细胞的收缩和细胞骨架的塌陷。因此,目前关于MSCs是否有潜能分化成神经系的细胞是当今干细胞研究领域中的一个热点问题。 我们以前的研究证明了大鼠的MSCs移植到坐骨神经受损的部位后,在体内有一部分能够分化为Schwann细胞样细胞并且表达S100蛋白,MSC移植到体内是有利于神经的再生。为了进一步分析MSC在向Schwann细胞分化的过程中Schwann细胞标记蛋白S100蛋白是否真正发生了表达变化,我们的实验探讨大鼠骨髓基质细胞在体外诱导的过程中,MSCs的形态变化以及表达Schwann细胞的标记蛋白S100B蛋白的变化。 我们从成年SD大鼠的股骨和胫骨中分离培养MSCs。采用MTT法检测细胞的活力,FCM检测细胞周期和CD分子等方法研究MSCs的特性。结果证明MSCs在体外易扩增,传1—8代以内的细胞增殖能力无明显变化。未经诱导的MSCs大部分处于G_0/G_1期,G_0/G_1期的细胞所占百分比平均高于80%;骨髓基质细胞CD29(+),CD11b(-),CD90(+)。 本实验应用复合诱导因子BME,RA,FSK,bFGF,PDGF,HRG体外连续诱导MSCs向Schwann细胞样细胞分化。诱导分化后采用免疫荧光细胞化学染色,流式细胞仪,Western Blot和逆转录PCR方法分别检测检测Schwann细胞的标记蛋白S100蛋白及其mRNA的表达。结果发现诱导分化后的MSCs形态上发生了类似Schwann细胞样细胞的变化。MSCs在诱导过程中S100的mRNA有上升的趋势;通过免疫荧光方法观察到诱导后MSCs表达S100蛋白增强;我们又通过Western Blot和流式细胞仪进一步定量检测到MSCs表达S100蛋白增高。 又因为大多数的研究观察了细胞形态以及几种神经相关蛋白的免疫反应,也有报道用基因组学方法分析MSCs诱导过程中基因谱的表达变化。目前尚未见报道用蛋白质组学方法分析MSCs在诱导过程中蛋白谱的表达变化。我们进一步利用蛋白质组学技术分析MSCs向Schwann细胞样细胞诱导分化过程中蛋白谱的表达变化。我们采用2-DE技术分离未诱导和诱导分化过程中MSCs总蛋白,应用基质辅助激光解吸电离飞行时间质谱得到相应的肽质量指纹图谱,搜索数据库分析差异蛋白质点。我们所得到的MSCs蛋白谱有792±23个蛋白点,通过PDQuest软件分析未诱导MSCs蛋白谱和诱导分化过程中MSCs蛋白谱,初步分析发现有74个蛋白质的表达发生了明显的变化(p<0.05),其中43个蛋白表达上调,31个蛋白表达下调。我们通过质谱分析并进行网上数据库搜索匹配,初步分析发现这些蛋白主要包括骨架和结构蛋白(tubulin alpha,vimentin,brain-specific alpha actinin 1 isoform等)、生长因子类的蛋白(ciliary neurotropic factor,brain-derived neurotrophic factor等)、代谢相关蛋白及酶类(UDP-glucose dehydrogenase,eph and elk-related kinase等)、伴侣蛋白(heat shockprotein等)、受体类蛋白(Laminin receptor 1,Ly49 stimulatory receptor 3等)、细胞周期蛋白(p27,RAS p21 protein activator 1等)、钙结合蛋白(nucleobindin 1,non musclecaldesmon等)以及其它蛋白等。 总之,我们的实验结果表明MSCs在诱导分化后形态上发生了类似Schwann细胞样细胞的变化。未经诱导分化的MSCs表达少量S100蛋白,MSCs在这种体外条件诱导分化的过程中表达S100蛋白有明显的增加,而且在诱导分化过程中S100mRNA的表达有上升的趋势。 MSCs体外条件诱导分化过程中有较多蛋白表达发生变化;其中与神经细胞和神经胶质细胞相关蛋白:BDNF,CNTF,ILGF,pleiotrophin,FGF,GFAP,synaptophysin等在MSCs体外条件诱导分化过程中表达明显上调;本研究从蛋白质水平为MSCs体外向Schwann细胞样细胞条件诱导提供了新的研究资料。
[Abstract]:So far, the repair of peripheral nerve defects remains one of the most difficult problems to be solved in the field of clinical surgery. If the distance between the two ends is too far, it affects the growth of the regenerative axon. It is difficult to promote the development of neural tissue engineering research since the.20 century, especially the structure of "tissue engineering nerve" composed of scaffold materials and extracellular matrix, seed cells, and inducing and promoting growth factors. It provides new hope for people to search for nerve substitutes to repair peripheral nerve defects.
Schwann cells are the most important and most often used seed cells in the neural tissue engineering. But because the source of autologous Schwann cells is limited and it is not easy to proliferate, the allogenic Schwann cells will cause immune rejection. Therefore, the application of the "tissue engineering nerve" to the clinical study of the Schwann cell is still difficult to overcome. Bone marrow stromal cells MSCs (bone marrow stromal cells) has a wide range of sources, which can be expanded rapidly in a certain culture condition, with self renewal, active proliferation and multidirectional differentiation potential, and autologous transplantation overcomes the problems of ethical and immune rejection. As an ideal seed cell, it stands out.
In recent years, some in vitro studies have shown that MSCs can express the markers of neurons under the appropriate induction conditions. These studies have shown that MSCs has morphologically similar morphologic changes in neurons after induction of differentiation and can express specific proteins in neural cells, so these researchers think that MSCs sends to nerve cells. But there are different points of view, but there are different points of view. Some researchers believe that the differentiation of MSCs in the body is the process of fusion with the host's nerve cells. Some studies think that MSCs does not really differentiate, and the change of cell morphology is only due to the effect of inducer chemical stimulation to induce cell contraction and cell bone. It is a hot topic in the field of stem cell research that MSCs has potential to differentiate into neural lineage.
Our previous studies have shown that after MSCs transplantation in rats to the injured part of the sciatic nerve, part of the body can differentiate into Schwann cell like cells and express the S100 protein. The transplantation of MSC to the body is beneficial to the regeneration of the nerve. In order to further analyze the Schwann cell marker protein S10 in the process of MSC to Schwann fine cell differentiation. The change of expression of 0 protein is true. In our experiment, the morphologic changes of MSCs and the expression of S100B protein in Schwann cells during the induction of rat bone marrow stromal cells were investigated.
We isolated and cultured from the femur and tibia of adult SD rats and cultured MSCs. to detect cell viability by MTT method. FCM detected cell cycle and CD molecular methods to study the properties of MSCs. The results showed that MSCs was easily amplified in vitro, and the cell proliferation ability within 1 to 8 generations was not significantly changed. The uninduced MSCs was mostly in G_0/G_1 phase, G_0/G_1. The percentage of cells in the period was higher than 80%, bone marrow stromal cells CD29 (+), CD11b (-), CD90 (+).
This experiment used compound inducer BME, RA, FSK, bFGF, PDGF, HRG to induce MSCs to differentiate into Schwann cell like cells in vitro. Immunofluorescent cytochemical staining, flow cytometry, Western Blot and reverse transcription PCR were used to detect the expression of marker protein and expression of Schwann fine cell after induction of differentiation. The morphology of MSCs after induction of differentiation was similar to that of Schwann cell like cells. The mRNA of S100 increased in the induction process, and the MSCs expression of S100 protein was enhanced by immunofluorescence. We also quantified the MSCs expression S100 protein by Western Blot and flow cytometry.
Because most studies have observed the cell morphology and the immune responses of several nerve related proteins, it is also reported that the genomics method is used to analyze the changes in the expression of gene spectrum during the induction of MSCs. There is no report of proteomic analysis of the changes in the expression of egg white spectrum during the induction of MSCs. Analysis of the protein expression changes during the induction of differentiation of MSCs to Schwann cell like cells by white matter technology. We used 2-DE technology to separate MSCs total protein in the process of uninduced and induced differentiation. The corresponding peptide mass fingerprints were obtained by using matrix assisted laser desorption ionization time of flight mass spectrometry, and the differential protein was searched by database to analyze the differential protein. The MSCs protein spectrum has 792 + 23 protein points, and the PDQuest software is used to analyze the uninduced MSCs protein spectrum and the MSCs protein spectrum during the induction of differentiation. The preliminary analysis shows that the expression of 74 proteins has changed significantly (P < 0.05), of which 43 protein tables are up and 31 proteins are down regulated. Analysis and matching of online database search, preliminary analysis found that these proteins mainly include skeleton and structural proteins (tubulin alpha, vimentin, brain-specific alpha actinin 1 isoform, etc.), the protein of growth factor class (ciliary neurotropic factor, brain-derived neurotrophic), metabolic related proteins and enzymes Ose dehydrogenase, Eph and Elk-related kinase etc., chaperone protein (heat shockprotein, etc.), receptor class proteins (Laminin receptor 1, Ly49 stimulatory), cyclin protein (1, etc.), calcium binding protein (1, etc.), and other proteins.
In conclusion, our experimental results showed that the morphology of MSCs was similar to that of Schwann cell like cells after the induction of differentiation. The expression of S100 protein was obviously increased during the induction of differentiation without the MSCs expression of a small amount of S100 protein in the undifferentiated MSCs, and the expression of S100mRNA in the induced differentiation process was higher. The trend of rising.
The expression of more protein in the process of MSCs induced differentiation in vitro was changed, and the expression of BDNF, CNTF, ILGF, pleiotrophin, FGF, GFAP, synaptophysin in the process of differentiation in vitro was obviously up-regulated in the process of induction and differentiation of MSCs in vitro; this study was from protein level to Schwann cell like in vitro. Cell condition induction provides new research data.
【学位授予单位】:中国协和医科大学
【学位级别】:博士
【学位授予年份】:2006
【分类号】:R329

【共引文献】

相关期刊论文 前10条

1 唐小静,李昱华,陈微,陈荣,程睿,李亦平;胚胎发育早期头部特异表达的小鼠新基因BSG5的克隆及功能[J];动物学报;2004年04期

2 姚艺桑,付佳琪,陈微,杨玮,邹星,李宁,李亦平;小鼠胚胎脑特异表达的新基因bsg3的克隆及初步研究[J];北京师范大学学报(自然科学版);2004年03期

3 王婧,刘开彦;人骨髓间充质干细胞体外分化为雪旺样细胞的方法[J];北京大学学报(医学版);2003年02期

4 王春华,金维哲,姜晓丹;神经细胞黏附分子结构及其在神经系统的作用[J];中华神经医学杂志;2005年05期

5 王春华,金维哲,姜晓丹,刘月霞,徐如祥,蔡颖谦;大鼠骨髓源性神经干细胞NCAM受体标记检测及超微结构实验研究[J];中华神经医学杂志;2005年09期

6 赵泽文,常青,梁志清,李泽桂;应用小鼠体外全胚胎培养方法研究多氯联苯同系物PCB_(153)对胚胎发育的影响[J];重庆医学;2004年05期

7 彭锡嘉,刘少章,叶剑;少突胶质细胞与视神经再生[J];创伤外科杂志;2002年03期

8 陈春林,叶剑;髓磷脂相关性轴突生长抑制因子与中枢神经再生[J];创伤外科杂志;2005年05期

9 帖利军,潘建平,葛玲,张瑞娟;甲状腺激素对新生鼠小脑神经生长相关蛋白质表达的影响[J];中国当代儿科杂志;2001年01期

10 王仕军,范慧民,秦伟,阴正勤;大鼠视皮层神经元电学特性的发育变化[J];第三军医大学学报;2003年08期

相关会议论文 前2条

1 聂鑫;金岩;张勇杰;刘源;;外胚间充质干细胞构建组织工程神经对大鼠坐骨神经缺损修复的促进研究[A];中国组织工程、干细胞与神经再生学术会议论文集[C];2004年

2 阿依木古丽;蔡勇;魏锁成;霍生东;李国荣;;静宁鸡胚脑发育的形态学观察[A];中国畜牧兽医学会动物解剖学及组织胚胎学分会第十六次学术研讨会论文集[C];2010年

相关博士学位论文 前10条

1 胡怀强;复健片促进MCAO大鼠中枢神经再生的机制研究[D];山东中医药大学;2008年

2 张月杰;刺参岩藻多糖对神经干/前体细胞的增殖作用及其机制研究[D];山东大学;2010年

3 陈娟娟;小鼠巨细胞病毒感染对乳鼠海马突触数目及突触相关蛋白的影响研究[D];华中科技大学;2011年

4 李蓓;蒙古马毛色性状相关基因多态性分析及组织表达研究[D];内蒙古农业大学;2011年

5 郝丽云;孕期炎症刺激对子代大鼠认知能力的影响及其初步机制研究[D];第三军医大学;2011年

6 陈超;首乌益智胶囊对血管性认知障碍大鼠Notch信号通路相关基因及星形胶质细胞的作用研究[D];山东中医药大学;2011年

7 孙菲;ADSCs-复合去细胞动脉导管对大鼠面神经缺损的修复[D];第四军医大学;2011年

8 陈娟娟;小鼠巨细胞病毒感染对乳鼠海马突触数目及突触相关蛋白的影响研究[D];华中科技大学;2011年

9 鲁凯伍;GDNF基因治疗大鼠脊髓损伤实验研究[D];第二军医大学;2001年

10 陆怀秀;D1x1和D1x2基因在牙胚发育中调控作用的研究[D];第四军医大学;2001年

相关硕士学位论文 前10条

1 王洁;中国壮族家系指间区纹候选基因的连锁分析[D];广西医科大学;2011年

2 陆定贵;软骨损伤后基质细胞衍生因子-1表达及其意义[D];广西医科大学;2011年

3 徐静;Wistar大鼠骨髓间充质干细胞的分离、培养及鉴定[D];吉林大学;2011年

4 张晓晖;电针治疗对坐骨神经损伤大鼠NGF、CNTF、BDNF、bFGF表达的影响[D];北京中医药大学;2011年

5 郭小兵;proNGF及其受体p75、sortilin在人胚胎脊髓发育不同时期的表达变化[D];昆明医学院;2011年

6 尹益勇;脑发育期甲状腺激素对大鼠听觉诱发电位和学习记忆的影响[D];暨南大学;2011年

7 惠董娜;茶多酚对神经干细胞保护作用的研究[D];陕西师范大学;2011年

8 李宜炯;体外雪旺细胞与血管内皮细胞共培养的实验研究[D];河北医科大学;2011年

9 李家华;不同途径给予外源性神经生长因子NGF对骨折愈合影响的实验研究[D];安徽医科大学;2011年

10 杨会云;甲状腺素对成年期甲状腺功能减退大鼠前额叶SNARE和syt-1表达的影响[D];安徽医科大学;2011年



本文编号:2135851

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/2135851.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fc709***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com