植入物界面结核分枝杆菌生物膜形成的实验研究
[Abstract]:[objective] to study the adhesion ability and biofilm formation of Mycobacterium tuberculosis at the interface of different implants, and to observe the effect of rifampicin on the adhesion ability and biofilm of Mycobacterium tuberculosis. And the formation of biofilm of Mycobacterium tuberculosis in bone tuberculosis lesions at the implant interface, and to explore the feasibility and safety of one-stage internal fixation or joint formation technique in the treatment of active bone and joint tuberculosis. To provide a solid theoretical basis for the safe and reliable treatment of active bone tuberculosis by internal fixation or artificial articulation. [methods] Titanium alloy, cobalt-chromium-molybdenum alloy, The implants of three kinds of polyethylene materials were placed in the suspension of Mycobacterium tuberculosis prepared by Middlebrook 7H9 liquid medium in aseptic condition. After 4 weeks of co-culture, one piece was taken out at random, and then added rifampicin solution for 2 weeks. After fixing, drying and spraying gold, the samples were observed by electron microscope, and the number of colony adhesion per unit area of implant interface was counted. The effect of Mycobacterium tuberculosis on different implants (titanium alloy, cobalt-chromium-molybdenum alloy, polyethylene) and interface (smooth surface) were compared. The adhesiveness of rifampicin was observed before and after the intervention of rifampicin, and the biofilm structure of implant interface was observed. To collect the internal objects taken out by the patients with recurrent bone tuberculosis after reoperation, after fixation, drying, and spraying gold, The formation of biofilm was observed by scanning electron microscope. [results] before the intervention of rifampicin, the number of colonies adhered to the interface of polyethylene was significantly higher than that of the interface of cobalt, chromium and molybdenum. There was significant difference (P0.05); there was no significant difference in colony number between cobalt, chromium-molybdenum interfacial adhesion and titanium alloy interface (P0.05); after rifampicin intervention, the number of colonies at the interface of the three implants decreased significantly. The difference was statistically significant. The interface roughness of implants is different, and the adhesion ability of Mycobacterium tuberculosis is different, so it is easier to adhere to the rough interface of implants. There was a first order interaction between implant interface and material properties (P0.05). Mycobacterium tuberculosis did not form biofilm at the interface of cobalt, chromium and molybdenum, but typical biofilm formation could be seen at the interface of polyethylene, but rifampicin could inhibit or even destroy the biofilm. The interface of the implants extracted from the bone tuberculosis lesions was only scattered in the adhesion of Mycobacterium tuberculosis, either dried or cracked, and no biofilm formation was observed. [conclusion] the adhesion ability of Mycobacterium tuberculosis to the implants and the material properties of the implants were observed. The biofilm can be formed at the implant interface, but it is selective and specific. Rifampicin can reduce the ability of mycobacterium tuberculosis to adhere to the implant interface, and can inhibit or even destroy TB biofilm. In the focus of bone tuberculosis, no mycobacterium tuberculosis formed biofilm at the interface of the implanted titanium alloy and cobalt chromium-molybdenum material. The low adhesion of Mycobacterium tuberculosis to the implant interface and the rare formation of biofilm are the key factors for the primary debridement and internal fixation of active bone joint tuberculosis or for the safety and feasibility of joint formation. Under the premise of systemic and local use of antituberculous drugs, selective implant implantation of tuberculosis does not increase the risk of postoperative recurrence of bone tuberculosis.
【学位授予单位】:天津医科大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R687;R529.2
【相似文献】
相关期刊论文 前10条
1 ;2010年医学植入物相关新闻回顾[J];中国组织工程研究与临床康复;2010年22期
2 ;关于医学植入物的学术争鸣[J];中国组织工程研究与临床康复;2010年22期
3 ;本刊已出版的“植入物材料与人体反应”热点文章题录[J];中国组织工程研究与临床康复;2011年17期
4 R.M.Pilliar,钟生平;多孔植入物的界面研究[J];生物医学工程学杂志;1985年02期
5 杨燕妮;植入物感染的研究进展[J];重庆医学;2003年07期
6 刘宝军,田宇;骨不连的植入物及治疗方法述要[J];中医药学刊;2003年04期
7 何筠;中国医疗器械行业协会外科植入物专业委员会成立大会暨专业技术研讨会在京召开[J];中国医疗器械信息;2004年03期
8 胡文娟;手术植入物的管理方法[J];上海护理;2005年01期
9 肖爱华;;2例体内植入物断裂的分析及管理对策[J];实用医技杂志;2008年05期
10 范珂;;手术植入物的安全管理[J];中国实用医药;2009年32期
相关会议论文 前10条
1 赵玛丽;种银保;;人体植入物应用现状及管理对策[A];中华医学会医学工程学分会第十次学术年会暨2009中华临床医学工程及数字医学大会论文集[C];2009年
2 曹艳冰;;手术植入物的安全管理[A];全国医院感染护理新进展研讨会论文汇编[C];2010年
3 赵自勤;陈慧;;小型植入物盒的设计与应用[A];中华护理学会第六届消毒供应中心发展论坛暨两岸四地学术交流研讨会论文汇编(下册)[C];2010年
4 邱超;;外来器械与植入物的标准化管理[A];中华护理学会第7届消毒供应中心发展论坛论文汇编[C];2011年
5 赵杰;;外来医疗器械及植入物的规范化管理[A];2013年河南省医院消毒供应中心(室)规范化建设与管理学术会议论文集[C];2013年
6 陈晓霞;;高值植入物的管理体会[A];全国第九届骨科护理学术交流暨专题讲座会议论文汇编[C];2007年
7 邓厚斌;葛毅;王敏;;医用内植入物安全质控之验收关键点分析[A];中华医学会医学工程学分会第八次学术年会暨《医疗设备信息》创刊20周年庆祝会论文集[C];2006年
8 陈晓霞;;高值植入物的管理体会[A];全国第12届手术室护理学术交流暨专题讲座会议论文汇编(上册)[C];2008年
9 孙芳林;孙惠芳;康晋萍;;植入物快速生物监测的管理[A];全国第四届医院消毒供应中心护理学术交流暨专题讲座会议论文汇编[C];2008年
10 黄靖雄;;植入物的零风险管理[A];中国医院协会第十四届全国医院感染管理学术年会资料汇编[C];2007年
相关重要报纸文章 前10条
1 David Jolly 翻译 王迪;乳房植入“幽灵”[N];医药经济报;2012年
2 正荣张;髋骨植入物撤!撤!撤![N];医药经济报;2001年
3 詹文革;钛及钛合金——人体植入物的理想材料[N];中国有色金属报;2006年
4 湘雅医院教授 胡懿惷 硕士 曾敏;脊柱内植入物(下)[N];大众卫生报;2012年
5 本报记者 罗兵;植入金属前景看好[N];中国质量报;2012年
6 史春树;屠夫马斯如何造出“爆炸硅胶”[N];深圳特区报;2012年
7 ;发布《外科植入物生产实施细则》[N];中国高新技术产业导报;2003年
8 Alex Nussbaum 翻译 徐树明;FDA加强阴道植入物安全审查[N];医药经济报;2012年
9 莞商大会特别报道组;掀起医用植入物材料革命[N];东莞日报;2012年
10 沈洪;骨科医用生物材料发展趋势[N];中国医药报;2000年
相关硕士学位论文 前4条
1 熊庆广;植入物界面结核分枝杆菌生物膜形成的实验研究[D];天津医科大学;2015年
2 石磊;新型低弹β钛合金植入物—骨界面成骨效应研究[D];第四军医大学;2008年
3 张为中;改良viscocanalostomy术中新型植入物的实验研究[D];南京医科大学;2007年
4 胡弦;基于MEM工艺耳廓修复永久性植入物的个性化设计与表面改性的研制[D];杭州电子科技大学;2012年
,本文编号:2191219
本文链接:https://www.wllwen.com/yixuelunwen/chuanranbingxuelunwen/2191219.html