季节性求和自回归移动平均模型在北京市房山区感染性腹泻发病趋势预测中的应用
发布时间:2018-10-12 17:31
【摘要】:目的构建北京市房山区感染性腹泻发病的季节性求和自回归移动平均(seasonal autoregressive integrated moving average,SARIMA)模型并进行预测。方法应用R 3.0.1软件程序包中的TSA对2004 2013年房山区感染性腹泻月发病率构建模型,并对2014年各月感染性腹泻月发病率进行预测和评价。结果 SARIMA(0,0,2)(0,1,1)12模型较好地拟合既往时间段月发病率,对2014年发病趋势拟合平均相对误差为19.164%,对年发病率拟合平均相对误差为2.303%。结论 SARIMA(0,0,2)(0,1,1)12模型能够很好拟合感染性腹泻月发病率数据,可用于房山区感染性腹泻发病趋势的短期预测,为下一步采取针对性防控措施提供科学依据。
[Abstract]:Objective to establish and predict the seasonal sum autoregressive moving average (seasonal autoregressive integrated moving average,SARIMA) model of infectious diarrhea in Fangshan District, Beijing. Methods A model of monthly incidence of infectious diarrhea in Fangshan District in 20042013 was established by using TSA in R3.0.1 software package, and the monthly incidence rate of infectious diarrhea in 2014 was predicted and evaluated. Results the monthly incidence of the past time period was well fitted by SARIMA (0 ~ 0 / 2) (0 ~ 1 / 1) _ (12) model. The average relative error of fitting the incidence trend in 2014 was 19.164, and the average relative error for annual incidence was 2.303%. Conclusion the SARIMA (0 ~ 0 ~ 0 ~ (2) (0 ~ 1 ~ 1 ~ (-1) _ (12) model can well fit the monthly incidence data of infectious diarrhea, and can be used to predict the incidence trend of infective diarrhea in Fangshan area in the short term, and provide scientific basis for the next step of prevention and control measures.
【作者单位】: 北京市房山区疾病预防控制中心;
【分类号】:R516.4
[Abstract]:Objective to establish and predict the seasonal sum autoregressive moving average (seasonal autoregressive integrated moving average,SARIMA) model of infectious diarrhea in Fangshan District, Beijing. Methods A model of monthly incidence of infectious diarrhea in Fangshan District in 20042013 was established by using TSA in R3.0.1 software package, and the monthly incidence rate of infectious diarrhea in 2014 was predicted and evaluated. Results the monthly incidence of the past time period was well fitted by SARIMA (0 ~ 0 / 2) (0 ~ 1 / 1) _ (12) model. The average relative error of fitting the incidence trend in 2014 was 19.164, and the average relative error for annual incidence was 2.303%. Conclusion the SARIMA (0 ~ 0 ~ 0 ~ (2) (0 ~ 1 ~ 1 ~ (-1) _ (12) model can well fit the monthly incidence data of infectious diarrhea, and can be used to predict the incidence trend of infective diarrhea in Fangshan area in the short term, and provide scientific basis for the next step of prevention and control measures.
【作者单位】: 北京市房山区疾病预防控制中心;
【分类号】:R516.4
【参考文献】
相关期刊论文 前1条
1 胡建利;刘文东;梁祁;吴莹;李媛;戴启刚;鲍倡俊;朱叶飞;汤奋扬;彭志行;陈峰;;季节指数法和ARIMA模型在感染性腹泻周发病数预测中的应用研究[J];中华疾病控制杂志;2013年08期
【共引文献】
相关期刊论文 前8条
1 黄晓霞;张顺先;赵俊伟;司拨云;王世文;王英;;采用自回归移动平均模型预测中国手足口病月发病率[J];疾病监测;2013年05期
2 陶芳芳;冯玮;方博;钱轶峰;顾宝柯;;感染性腹泻病的气象预报模式的建立与验证[J];环境与职业医学;2013年08期
3 于春荣;;口服轮状病毒活疫苗预防轮状病毒肠炎效果评价[J];中外医疗;2013年28期
4 刘如春;陈田木;胡国清;;长沙市某校甲型H1N1流感暴发过程及其防控策略效果的Logistic模型模拟[J];中华疾病控制杂志;2014年04期
5 鲁婧婧;谈晔;陈秀云;王翠玲;赵志;张晋昕;;ARMA模型用于预测病毒性甲型肝炎发病趋势[J];中华疾病控制杂志;2014年04期
6 邱琳;郁会莲;李红蕾;朱妮;,
本文编号:2266994
本文链接:https://www.wllwen.com/yixuelunwen/chuanranbingxuelunwen/2266994.html
最近更新
教材专著