当前位置:主页 > 医学论文 > 畜牧兽医论文 >

内蒙古典型草原不同植物动态及其与气象因子的滞后响应

发布时间:2018-04-07 00:07

  本文选题:生物量 切入点:气象因子 出处:《内蒙古农业大学》2017年硕士论文


【摘要】:在全球变化与陆地生态系统关系的研究中,气候和植被相关关系的研究具有非常重要的意义。本文利用不同植物地上生物量实地调查数据以及气象资料,研究内蒙古锡林郭勒典型草原羊草+大针茅草地个体植物与环境因子的关系,探讨气象因子对植物地上生物量的影响,并探索其与气象因子间的滞后效应以及对应时滞期。(1)采用随机森林算法解析6种气象因子与7种植物地上生物量之间的关系。结果表明:气温、相对湿度、降水这3种气象因子对7种牧草地上生物量具有显著正效应,即温度较高、湿度较大,有利于促进牧草生物量累积。同时,由于植物个体差异,各类植物与不同气候因子适应性亦存在差异。具体表现为气候因子对羊草、大针茅以及羽茅生物量的影响力为:气温地温湿度降水量蒸发量日照时数;对米氏冰草为:气温湿度地温降水量蒸发量日照时数;对冷蒿而言,气温湿度降水量地温蒸发量日照时数;对黄囊苔草而言,地温气温湿度降水量蒸发量日照时数;对砂韭而言,气温降水量湿度地温蒸发量日照时数。(2)利用灰色系统理论,对7种植物地上生物量与不同滞后时段气象要素逐一进行灰色关联分析,以寻找影响植物生物量变化的关键气象因子以及生物量对气候要素响应的时滞期。气温、地温、降水量对牧草生物量总体影响较大,不同植物在完成其生长发育过程中对各环境因子的响应具有滞后效应,温度、降水的响应时滞期变化比较明显,且响应滞后期在年际间亦有所差异。(3)根据灰色模型理论,建立生物量与滞后气象因子的多变量灰色时滞GM(1,N|τ)模型,分别对7种植物地上生物量进行模拟和比较,结果表明模型模拟出的生物量具有较高的拟合精度。7种植物每三年的生物量模拟值平均绝对误差均小于20%,通过灰色模型精度检验标准,模型效果较好。同时也表明计算出的植物滞后响应时滞期可信度较高。
[Abstract]:In the study of the relationship between global change and terrestrial ecosystem, the study of the relationship between climate and vegetation is of great significance.Based on the field investigation data and meteorological data of different plant aboveground biomass, the relationship between individual plants and environmental factors in Leymus chinensis (Leymus chinensis) grassland in typical grassland of Xilinguole, Inner Mongolia, was studied in this paper.The effects of meteorological factors on aboveground biomass of plants were discussed, and the lag effect between meteorological factors and meteorological factors and the corresponding time lag time lag were explored.) the relationship between 6 meteorological factors and 7 kinds of plant aboveground biomass was analyzed by stochastic forest algorithm.The results showed that temperature, relative humidity and precipitation had significant positive effects on aboveground biomass of 7 species of forage, that is, higher temperature and higher humidity could promote the accumulation of forage biomass.At the same time, because of the individual difference of plants, the adaptability of different kinds of plants to different climatic factors is also different.The effects of climatic factors on the biomass of Leymus chinensis, Stipa grandis and Stipa pinnatifida are as follows: temperature, temperature, humidity, precipitation, evaporation, sunshine hours, temperature, humidity, ground temperature, precipitation, evaporation hours, and Artemisia annua.Air temperature and humidity precipitation sunshine hours, ground temperature evaporation hours for Carex sinensis, temperature temperature humidity precipitation evaporation hours, for leek, air temperature, humidity, ground temperature evaporation, sunshine hours, grey system theory,Grey correlation analysis was carried out one by one between the aboveground biomass of seven plants and meteorological elements in different lag periods in order to find out the key meteorological factors affecting the change of plant biomass and the time lag of biomass response to climatic elements.Air temperature, ground temperature and precipitation have a great effect on the biomass of forage. The response of different plants to various environmental factors in the process of growth and development has a lag effect, and the response time lag of temperature and precipitation is obvious.The response lag is also different from year to year. According to the grey model theory, a multivariable grey delay GM1N 蟿 model of biomass and lag meteorological factors is established, and the aboveground biomass of 7 species of plants is simulated and compared respectively.The results showed that the biomass simulated by the model had a high fitting accuracy. 7. The average absolute error of biomass simulation value of every three years was less than 20%, and the model effect was better through the test standard of grey model precision.At the same time, it also shows that the calculated plant lag response time delay reliability is higher.
【学位授予单位】:内蒙古农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S812

【参考文献】

相关期刊论文 前10条

1 刚成诚;王钊齐;杨悦;陈奕兆;张艳珍;李建龙;程积民;;近百年全球草地生态系统净初级生产力时空动态对气候变化的响应[J];草业学报;2016年11期

2 沈海花;朱言坤;赵霞;耿晓庆;高树琴;方精云;;中国草地资源的现状分析[J];科学通报;2016年02期

3 庞静;杜自强;张霄羽;;新疆地区植被对水热条件的时滞响应[J];中国农业资源与区划;2015年07期

4 张素燕;;浅析我国农业气象灾害与气候变化的关系[J];农技服务;2015年01期

5 张存厚;王明玖;赵杏花;孙小龙;陈海军;武荣盛;;基于CENTURY模型的荒漠草原ANPP对气候变化响应的模拟[J];生态学杂志;2014年10期

6 赵明伟;岳天祥;孙晓芳;赵娜;;基于草地综合顺序分类系统(IOCSG)的中国北方草地地上生物量高精度模拟[J];生态学报;2014年17期

7 袁文平;蔡文文;刘丹;董文杰;;陆地生态系统植被生产力遥感模型研究进展[J];地球科学进展;2014年05期

8 王常顺;孟凡栋;李新娥;姜丽丽;汪诗平;;草地植物生产力主要影响因素研究综述[J];生态学报;2014年15期

9 郭群;胡中民;李轩然;李胜功;;降水时间对内蒙古温带草原地上净初级生产力的影响[J];生态学报;2013年15期

10 张清雨;吴绍洪;赵东升;戴尔阜;;内蒙古草地生长季植被变化对气候因子的响应[J];自然资源学报;2013年05期

相关硕士学位论文 前7条

1 包学锋;锡林郭勒盟天然草地牧草气候生产力对气候变化的响应[D];内蒙古农业大学;2015年

2 郑军伟;基于灰色系统理论的数据关联度建模及其应用[D];杭州电子科技大学;2011年

3 杨志捷;水热变化对内蒙古草地牧草生长发育影响模型研究[D];中国农业科学院;2007年

4 曹明霞;灰色关联分析模型及其应用的研究[D];南京航空航天大学;2007年

5 李翠凤;灰色系统建模理论及应用[D];浙江工商大学;2006年

6 王云霞;内蒙古草地退化成因与草原畜牧业可持续发展研究[D];内蒙古农业大学;2004年

7 温丽华;灰色系统理论及其应用[D];哈尔滨工程大学;2003年



本文编号:1719503

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/1719503.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f6546***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com