添加剂及氨碱处理对青贮玉米秸秆厌氧消化特性的影响
本文选题:青贮玉米秸秆 + 厌氧消化 ; 参考:《兰州理工大学》2017年硕士论文
【摘要】:本文以青贮玉米秸秆为原料,研究了青贮玉米秸秆与牛粪在总固体(Total Solid,TS)比3:7混合、接种量30%、37±1℃条件下厌氧消化产甲烷特性和系统稳定性的变化。尝试应用4.5%氨水(Ammonium Hydroxide,AH)和4%Na OH(Sodium Hydroxide,SH)对青贮玉米秸秆进行联合预处理,并使用Modified Gompertz方程和Logistic函数对试验数据进行拟合和分析,为青贮玉米厌氧消化产业化应用提供一定的参考和依据。本研究得出以下结论:1.青贮玉米秸秆与干黄玉米秸秆厌氧消化特性对比青贮玉米秸秆(ME)在青贮24个月后厌氧消化产气特性与干秸秆(DC)相近,差异在1%以内,挥发性固体(volatile solid,VS)产气率较DC组提高约3.40%,VS产甲烷率提高约2.63%。2.由不同青贮玉米秸秆与牛粪混合厌氧消化试验可得:(1)不同青贮玉米秸秆与牛粪混合厌氧消化在原料特性、产气特性和系统稳定性相近。(2)通过产甲烷潜力(Biochemical Methane Potential,BMP)试验和Modified Gompertz方程、Logistic函数的拟合,FA组最大甲烷累积产量约为204.02~209.86m L·g-1TS,最大产甲烷速率约为10.20~10.22 m L/g·d-1 TS,延滞期约为12~14d,厌氧消化试验综合表现最佳。3.青贮玉米秸秆经氨联合处理后厌氧消化试验结果:(1)各处理组运行稳,化学需氧量(Chemicals Oxygen Demand,COD)消解率远大于未处理组。(2)各处理组间差异明显,且无显著延滞期或延滞期较短。结合通过BMP试验和两个模型可知,两个模型对AH-PA组的拟合效果均不理想(R2分别为0.7148和0.6903),其余处理组的拟合数据表明Logistic函数的拟合更佳,R2最小值出现在AH-FA组(0.9788)。AH-LB组延滞期最大,约为5~6d。(3)氨处理在一定程度上降低了青贮玉米秸秆的厌氧消化产气特性,其中AH-FA组整体降幅最大,累积产气量约降低63.71%;AH-PA组的降幅最小,累积产气(甲烷)量、TS/VS产气率降幅分别为17.24%、22.22%、17.24%和3.05%。4.青贮玉米秸秆经碱联合处理后厌氧消化试验结果:(1)同氨处理组,系统稳定性高。(2)各处理组差异明显,无显著延滞期或延滞期较短。结合通过BMP试验和两个模型可得,两个模型对Na OH处理组的拟合均不理想(SH-LB和SH-ME组除外,两个模型的R2均大于0.99),整体上Logistic函数的拟合效果更优异。(3)Na OH处理对不同青贮原料的产气特性影响不同:SH-CB组各项数据均大于未处理组,其中VS产甲烷率提升最大,较未处理组提升约28.30%;SH-FA、SH-ME和SH-PA组则是部分提高部分下降;SH-LB组的各项指标均低于未处理组,其中TS产甲烷率降幅最大,约为33.40%。5.同等条件下氨联合处理与碱联合处理对青贮玉米秸秆影响的对比:(1)共性:两种处理方式均明显的中和青贮玉米秸秆的p H,并加速原料的水解酸化过程,提升厌氧消化系统对原料的利用率和转化率,缩短厌氧消化试验的周期,厌氧消化系统的稳定性和效率优质很改善。(2)差异:氨处理组除平均甲烷体积分数方面比未处理组提高约0.92~3.08%(AH-CB、AH-FA和AH-LB)外,其它方面均远低于未处理组;Na OH处理组则表现各异,SH-CB组各项数据均大于未处理组,SH-FA、SH-ME和SH-PA组则是部分提高部分下降,SH-LB组的各项指标均低于未处理组。(3)两个模型对AH-PA和SH-PA组的拟合效果均不理想,且整体上看Modified Gompertz方程的拟合效果均不如Logistic函数,且较Na OH处理组更适于氨处理组的拟合。
[Abstract]:In this paper, the silage corn straw was used as the raw material to study the change of methane production and system stability in the anaerobic digestion of silage corn straw and cow dung mixed with total solid (Total Solid, TS) and the inoculation amount 30%, 37 + 1 C. 4.5% ammonia (Ammonium Hydroxide, AH) and 4%Na OH (Sodium Hydroxide, SH) were applied to the silage corn straw. Combined with Modified Gompertz equation and Logistic function, the experimental data were fitted and analyzed in order to provide some reference and basis for the industrial application of anaerobic digestion for silage corn. The following conclusions were drawn: 1. comparison of the anaerobic digestion characteristics of silage corn straw and dry yellow corn straw (ME) in green corn straw After 24 months of storage, the characteristics of anaerobic digestion were similar to that of dry straw (DC), the difference was within 1%. The gas yield of volatile solid (volatile solid, VS) was raised about 3.40% compared with that of DC group. The methane production rate of VS was improved by 2.63%.2. by the mixed anaerobic digestion test of different silage corn stalks and cow dung: (1) mixed anaerobic digestion of different silage corn stalks and cow dung In the properties of raw materials, the gas production characteristics and system stability are similar. (2) with the methane production potential (Biochemical Methane Potential, BMP) test, the Modified Gompertz equation and the Logistic function fitting, the maximum methane accumulation of FA group is about 204.02~209.86m L. G-1TS, the maximum methane production rate is approximately 10.20~10.22. 14d, anaerobic digestion test showed that the best.3. silage corn straw combined anaerobic digestion test results: (1) the treatment group runs steadily, the chemical oxygen demand (Chemicals Oxygen Demand, COD) digestion rate is far greater than the untreated group. (2) the difference between the treatment groups is obvious, and there is no significant delay or delay period. Combined through BMP test And the two models showed that the fitting effect of the two models to the AH-PA group was not ideal (R2 0.7148 and 0.6903 respectively). The fitting data of the rest of the treatment groups showed that the fitting of the Logistic function was better, the minimum R2 value appeared in the AH-FA group (0.9788).AH-LB group, and the 5~6d. (3) ammonia treatment reduced the silage corn straw to a certain extent. In anaerobic digestion, the total reduction of AH-FA group was the largest, the cumulative gas production was reduced by 63.71%, the decrease of AH-PA group was the smallest, the cumulative gas production (Jia Wan), and the decrease of TS/VS production rate were 17.24%, 22.22%, 17.24% and 3.05%.4. silage corn stalk after alkali treatment. (1) the system stability was high in the same ammonia treatment group. (2) the difference of each treatment group is obvious, there is no significant delay or delay. Combining the BMP test and two models, the fitting of the two models to the Na OH treatment group is not ideal (except the SH-LB and SH-ME group, the R2 of the two models are greater than 0.99), and the fitting effect of the Logistic function on the whole is better. (3) Na OH treatment for different silage materials The effects of gas production were different: the data of SH-CB group were greater than those in the untreated group, and the methane production rate of VS was increased by 28.30%, while SH-FA, SH-ME and SH-PA were partly reduced, and the indexes of SH-LB group were lower than those in the untreated group, and the methane production rate of TS was the largest, which was about the same conditions as 33.40%.5. under the same condition. The effects of combined treatment and alkali treatment on silage corn straw were compared: (1) common: two treatment methods were all obviously neutralized with silage corn straw P H, and accelerated the hydrolysis acidification process of raw materials, improved the utilization rate and conversion rate of anaerobic digestion system to raw materials, shortened the cycle of anaerobic digestion test, and the stability of anaerobic digestion system. And the efficiency is better. (2) difference: the ammonia treatment group is far lower than the untreated group in addition to the average methane volume fraction 0.92~3.08% (AH-CB, AH-FA and AH-LB), and the Na OH treatment group is different, the SH-CB group is larger than the untreated group, SH-FA, SH-ME and SH-PA groups are partially improved. All the indexes of the SH-LB group were lower than those in the untreated group. (3) the fitting effect of the two models to the AH-PA and SH-PA groups was not ideal, and the fitting effect of the Modified Gompertz equation on the whole was not as good as the Logistic function, and it was more suitable for the fitting of the ammonia treatment group than the Na OH treatment group.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S816.53
【参考文献】
相关期刊论文 前10条
1 夏嵩;晏恒;付尹宣;付嘉琦;;餐厨垃圾厌氧发酵产沼气潜力及其动力学研究[J];能源研究与管理;2016年04期
2 袁志慧;尤朝阳;王磊;张路广;;中温NaOH预处理对玉米秸秆发酵产沼气的影响[J];江苏农业科学;2016年06期
3 陈莹;尹常凯;朱南文;袁海平;楼紫阳;;电刺激条件下初始pH值对剩余污泥厌氧消化效果的影响[J];中国环境科学;2016年03期
4 韩娅新;张成明;陈雪兰;李砚飞;岳瑞雪;姜立;李十中;;不同农业有机废弃物产甲烷特性比较[J];农业工程学报;2016年01期
5 李超;刘刚金;刘静溪;陈柳萌;张诚;董泰丽;邓良伟;;基于产甲烷潜力和基质降解动力学的沼气发酵物料评估[J];农业工程学报;2015年24期
6 司清蕊;;氨化处理对秸秆的作用机理[J];畜牧兽医科技信息;2015年10期
7 龚舒静;段青松;杨姝;秦向东;;NaOH预处理对杂交狼尾草厌氧发酵产沼气的影响[J];环境工程学报;2015年04期
8 张洪;李勇;郭志伟;倪海亮;任维琰;顾广发;;混合比对市政污泥与餐厨垃圾二级高温共消化的影响[J];可再生能源;2015年03期
9 高树梅;赵明星;许之扬;余益辉;王永会;黄振兴;阮文权;;餐厨垃圾固渣厌氧发酵产甲烷潜力及Logistic动力学研究[J];安全与环境学报;2015年01期
10 任海伟;姚兴泉;李金平;李志忠;王鸣刚;王春龙;张殿平;孙永明;;青贮玉米秸秆与牛粪混合厌氧消化产气性能的试验研究[J];中国沼气;2015年01期
相关会议论文 前2条
1 张万钦;郎乾乾;吴树彪;董仁杰;庞昌乐;陈理;;猪不同生长阶段粪便产沼气潜力与特性[A];2012中国沼气学会学术年会论文集[C];2012年
2 侯方安;康云友;;玉米秸秆的饲料加工利用技术探析[A];全国农作物秸秆综合利用学术研讨会论文集[C];2004年
相关博士学位论文 前3条
1 夏益华;预处理对水葫芦和稻秸厌氧消化产沼气性能的影响研究[D];浙江大学;2014年
2 陈祥;餐厨垃圾两相厌氧发酵氨氮特性与控制方法研究[D];浙江大学;2014年
3 袁绍春;蚯蚓处理污水污泥工艺及蚯蚓粪土地利用研究[D];重庆大学;2012年
相关硕士学位论文 前10条
1 赵拓;添加剂对玉米秸秆与白菜混贮品质影响及细菌多样性研究[D];兰州理工大学;2016年
2 葛振;城市垃圾厌氧发酵沼渣堆肥及其利用研究[D];北京建筑大学;2014年
3 美合热阿依·木台力甫(Mihray Mutallip);乳酸菌与纤维素分解菌混合添加剂对青贮饲料品质的影响研究[D];新疆大学;2014年
4 徐清华;秸秆饲料复合化学调制效果研究[D];石河子大学;2014年
5 张亚甜;氨化预处理对稻草和玉米秸厌氧发酵产气性能影响的试验研究[D];北京化工大学;2013年
6 沈佳悦;太阳能加热的三级恒温沼气生产系统运行策略优化研究[D];兰州理工大学;2012年
7 张慧强;常温下气动UASB反应器处理城市生活污水的性能研究[D];青岛理工大学;2011年
8 朱莹莹;青贮饲料新工艺的研究[D];黑龙江大学;2011年
9 楚莉莉;不同原料及其配比厌氧发酵产气效果研究[D];西北农林科技大学;2008年
10 郑万里;热碱预处理对秸秆厌氧发酵的影响[D];中国农业大学;2004年
,本文编号:2044104
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2044104.html