麸皮多糖微生物发酵制备及其粗制品抗氧化活性的研究
本文选题:麸皮多糖 + 微生物发酵 ; 参考:《内蒙古农业大学》2017年硕士论文
【摘要】:本研究以麸皮为原料,配以豆粕粉、玉米粉等辅料,利用微生物发酵法制备麸皮多糖并对其粗制品抗氧化活性进行研究。本论文从以下两个方面进行研究探讨:1麸皮多糖的微生物发酵制备和提取1.1发酵菌种及其组合的筛选以发酵麸皮中多糖产量为指标,利用植物乳杆菌P8(LactobacillusplantarumP8)、酿酒酵母 CGMCC2.119(Saccharomyces cerevisiae CGMCC2.119)、枯草芽孢杆菌CGMCC 1.0892(Bacillussubtilis CGMCC 1.0892)和地衣芽孢杆菌 D3(Bacillus licheniformis D3)四种菌进行单菌和混菌发酵麸皮培养基,结果发现酿酒酵母菌与枯草芽孢杆菌混菌发酵效果最好,此时的麸皮多糖产量为44.55mg/g1.2接种比例及辅料的确定在发酵菌种及其组合确定的基础上,以发酵麸皮中多糖产量作为指标,通过Plackett-Burman试验设计和响应面优化法得到:酿酒酵母菌与枯草芽孢杆菌的最适接种比例为6.7:3.3;以麸皮为主料,豆粕粉和玉米粉为辅料的固态培养基配比为麸皮80.46%、豆粕粉9.32%和玉米粉10.22%。此时,发酵产物中多糖产量55.92mg/g1.3增效剂的确定在前面试验的基础上,以麸皮多糖产量作为指标,通过Plackett-Burman设计筛选MgS04、MnS04、CaCl2、KH2P04、尿素、柠檬酸钠、酒石酸钾钠和腐植酸钠等8种无机盐和有机盐,结果发现只有尿素对发酵麸皮多糖产量有显著影响(P0.05),可作为发酵增效剂;对尿素添加量进行单因素优化试验得出:尿素的最佳添加量为0.1%。此时,发酵产物中多糖产量122.8 mg/g。1.4发酵条件的确定在前面试验的基础上,以多糖产量作为优化指标,对发酵条件(发酵时间、发酵温度、接种量、料水比)进行优化。通过单因素和响应面优化试验得到最后发酵条件为:发酵温度35.4℃,发酵时间52.7h,接种量10.4%,料水比为1:1.16,此时得到发酵产物中实际多糖含量为130.21mg/g,较优化前提高了 6%。1.5麸皮粗多糖提取条件研究由单因素试验确定,浸提温度80°C,浸提时间30min,料水比1:20为麸皮粗多糖的最佳提取条件。2麸皮多糖粗制品的抗氧化活性的研究通过腹腔注射Diquat建立氧化应激动物模型,以研究麸皮多糖粗制品对Wistar大鼠氧化应激的保护作用。试验选用雄性Wistar大鼠36只,暂养后按试验要求将大鼠随机分为6组。低剂量组(low-dose,CL)、中剂量组(middle-dose,CM)和高剂量组(high-dose,CH):每天分别灌服100、200和400 mg/kg体重麸皮多糖粗制品;正对照组(positive control,PC):100mg/kg体重维生素C;负对照组(negative control,NC):空白攻毒;正常对照组(control,CT):空白不攻毒。试验期14d。试验结束当天,除CT组外,其它五组大鼠腹腔注射Diquat0.1mmol/kg体重,CT组注射等量生理盐水,攻毒24h后屠宰。选取血浆、肝脏、肾脏、回肠和脾脏样品,测定抗氧化指标和炎性因子指标。试验表明:与NC组相比,麸皮多糖粗制品处理组的大鼠血浆和组织的CAT、SOD、GSH-Px活性和GSH含量显著上升(P0.05),脂质过氧化产物MDA水平显著降低(P0.05),其中CH组大鼠的部分抗氧化指标恢复到CT组的水平;同时,麸皮多糖粗制品处理组的大鼠,血浆和肝脏、肾脏、回肠和脾脏的TNF-α、IL-6、IL-2和IL-1β炎性因子显著低于NC组(P<0.0S)。综上,麸皮多糖粗制品可以有效缓解Diquat诱导的Wistar大鼠机体的氧化应激。就整体效果而言,麸皮多糖粗制品的保护作用具有剂量依赖性。
[Abstract]:In this study, bran was used as the raw material, mixed with soybean meal powder, corn flour and other excipients, and used microbial fermentation to prepare the bran polysaccharide and study the antioxidant activity of its crude products. This paper has been studied in the following two aspects: 1 fermentation of bran polysaccharide by microorganism fermentation and extraction of 1.1 fermenting strains and the selection of their combinations to ferment bran P8 (LactobacillusplantarumP8), Saccharomyces cerevisiae CGMCC2.119 (Saccharomyces cerevisiae CGMCC2.119), Bacillus subtilis CGMCC 1.0892 (Bacillussubtilis CGMCC 1.0892) and Bacillus licheniformis D3 (Bacillus licheniformis) were used to ferment bran culture medium by bacteria and mixed bacteria. The results showed that the fermenting effect of Saccharomyces cerevisiae and Bacillus subtilis was the best. At this time, the yield of bran polysaccharide was 44.55mg/g1.2 inoculation ratio and the determination of the excipient materials on the basis of fermentation strain and its combination. The yield of polysaccharide in fermented bran was taken as an index, and the Plackett-Burman test design and response surface optimization were obtained. The optimum proportion of the inoculation of yeast and Bacillus subtilis is 6.7:3.3, and the ratio of solid medium with bran as the main material, soybean meal powder and corn flour is 80.46% of bran, 9.32% of soybean meal powder and corn flour 10.22%., and the determination of 55.92mg/g1.3 synergist in the production of polysaccharide in the fermentation product is based on the previous experiment with the production of Bran Polysaccharides. As an indicator, 8 kinds of inorganic salts and organic salts, such as MgS04, MnS04, CaCl2, KH2P04, urea, sodium citrate, potassium tartrate sodium and sodium humate, were designed and screened by Plackett-Burman. The results showed that only urea had a significant effect on the yield of fermented bran polysaccharide (P0.05), which could be used as a synergist for fermentation; the single factor optimization test of the urea addition was carried out. It is concluded that the optimum addition of urea is 0.1%., and the fermentation conditions of polysaccharide yield 122.8 mg/g.1.4 are determined on the basis of the previous experiment, and the optimization of the fermentation conditions (fermentation time, fermentation temperature, inoculation quantity and ratio of feed water) is carried out on the basis of the previous experiment, and the final hair is obtained by the single factor and the response surface optimization test. Fermentation conditions are: fermentation temperature 35.4 C, fermentation time 52.7h, inoculation amount 10.4%, material water ratio is 1:1.16, at this time the actual polysaccharide content in the fermentation product is 130.21mg/g, compared with the optimization before optimization, the extraction conditions of 6%.1.5 bran coarse polysaccharide were improved by single factor test, the extraction temperature was 80 C, the extraction time was 30min, and the material water was at 1:20 as the coarse polysaccharide of bran. The optimum extraction conditions of.2 bran polysaccharide crude products were studied by intraperitoneal injection of Diquat to establish an oxidative stress animal model to study the protective effect of bran on oxidative stress in Wistar rats. 36 male Wistar rats were selected, and the rats were randomly divided into 6 groups according to the test requirements. Low dose group (l Ow-dose, CL), medium dose group (middle-dose, CM) and high dose group (high-dose, CH): 100200 and 400 mg/kg weight Bran Polysaccharides each day respectively; positive control group (positive control, PC): 100mg/kg weight vitamin C; negative control group: blank attack; normal control group: blank no attack. Experimental period On the day of the experiment, in addition to group CT, other five groups of rats were injected with Diquat0.1mmol/kg weight intraperitoneally, group CT was injected with equal amount of saline, and 24h after 24h was slaughtered. Plasma, liver, kidney, ileum and spleen were selected to determine the antioxidant index and inflammatory factors. The experiment showed that compared with the NC group, the rat plasma of the bran polysaccharide crude processing group was plasma The activity of CAT, SOD, GSH-Px and GSH in the tissues increased significantly (P0.05), and the MDA level of lipid peroxidation decreased significantly (P0.05), and some of the antioxidant indices of group CH rats recovered to the level of group CT; meanwhile, the rats of the bran polysaccharide crude processing group, plasma and liver, kidney, ileum and spleen were TNF- a, IL-6, IL-2, and beta inflammatory properties. The factors were significantly lower than that in group NC (P < 0.0S). To sum up, bran polysaccharides can effectively alleviate the oxidative stress in Wistar rats induced by Diquat. As a whole, the protective effect of bran polysaccharide crude products is dose-dependent.
【学位授予单位】:内蒙古农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S816
【参考文献】
相关期刊论文 前10条
1 史俊祥;齐景伟;安晓萍;刘娜;罗旭光;陈大勇;;腐植酸钠对酵母菌发酵特征的影响[J];饲料工业;2016年04期
2 赵梦丽;王丽丽;刘丽娅;钟葵;佟立涛;刘兴训;周闲容;周素梅;;小麦阿拉伯木聚糖对S180荷瘤小鼠免疫活性及肠道代谢产物的影响[J];现代食品科技;2015年10期
3 张锦玲;王勇;郭鹏;张立明;刘大程;;不同菌种组合对固态发酵料中营养活性物质含量及体外消化率的影响[J];中国畜牧兽医;2015年08期
4 赵范;刘会平;刘晓庆;张晨萍;王宇;徐娇娇;;燕麦麸β-葡聚糖降血糖及抗氧化作用研究[J];食品安全质量检测学报;2015年06期
5 凌阿静;杨静;李小平;张雪美;刘柳;胡新中;;真菌固态发酵制备麦麸可溶性膳食纤维的研究[J];安徽农业科学;2015年17期
6 王军;王忠合;章斌;伍振西;;麦麸多糖理化特性与抗氧化性分析[J];食品研究与开发;2015年07期
7 高斐斐;陈再忠;高建忠;王磊;黄志坚;;二元复合菌不同菌种配比对固态发酵豆粕营养价值的影响[J];上海海洋大学学报;2015年01期
8 孙应彪;郭芳;刘志飞;苏莉;李坚;胡晓婷;赵迟;;氯沙坦对百草枯急性染毒大鼠血清细胞因子和氧化应激水平的影响[J];毒理学杂志;2014年04期
9 刘娜;安晓萍;齐景伟;仝宝生;陈大勇;于长青;;腐植酸钠对植物乳杆菌固态发酵的影响[J];中国畜牧杂志;2014年05期
10 袁建;范哲;王艳;李倩;;小麦麸皮中β-葡聚糖的分离纯化及组成研究[J];食品工业科技;2014年15期
相关博士学位论文 前2条
1 解春艳;茶薪菇发酵制备麦麸膳食纤维与阿魏酰低聚糖及其生物活性研究[D];南京农业大学;2010年
2 闫贵龙;影响秸秆营养价值的作物学因素及复合化学处理的效果研究[D];中国农业大学;2005年
相关硕士学位论文 前10条
1 赵梦丽;小麦阿拉伯木聚糖益生与免疫调节活性研究[D];中国农业科学院;2015年
2 廖杰琼;菜籽粕固态发酵产纳豆激酶的条件及动力学研究[D];湖南农业大学;2014年
3 王哲奇;一种制备大豆多肽方法的研究[D];内蒙古农业大学;2013年
4 张梅红;小麦麸皮阿拉伯木聚糖的制备及益生活性研究[D];中国农业科学院;2013年
5 徐苗均;小麦麸皮可溶性膳食纤维的制备及其性质研究[D];合肥工业大学;2012年
6 党雪雅;谷物β-葡聚糖体内外益生作用的研究[D];郑州轻工业学院;2012年
7 潘妍;生物转化提取燕麦β-葡聚糖及其化妆品功效研究[D];北京工商大学;2010年
8 江生;小麦麸皮不同提取物的分析和抗氧化活性研究[D];江苏大学;2009年
9 张本光;Agaricus blazei Murill降解小麦麸阿拉伯木聚糖的营养学研究[D];福建农林大学;2008年
10 孙媛媛;还原型谷胱甘肽对冠心病患者抗氧自由基、内皮细胞功能及临床疗效的研究[D];福建医科大学;2007年
,本文编号:2093183
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2093183.html