ZAR1和GDF9基因的克隆及其在新西兰白兔的差异表达研究
[Abstract]:Maternal effect gene (MEG) is usually identified only in ovarian tissue and oocyte, and is now proved to be in the transition process of the parent type transition (maternal zygotic transition, MZT), that is, the transformation of the parent type to the zygotic type, as well as the early development of the mammalian embryo and the follicle. It plays an important role in the process of development. The zygote block factor 1 (zygote arrest 1, ZAR1) and growth differentiation factor 9 (growth differentiation factor 9, GDF9) are one of the few maternal effects genes that have been excavated earlier. In mice, rats, frogs, zebrafish, cattle, sheep, pigs, and other species have been reported that.ZAR1 is not only in oocyte. The GDF9 gene, as a member of the TGF- beta superfamily, has been proved to be the Qg source factor of the mammalian ovary, in the follicular and oocyte, as a member of the TGF- beta superfamily, and is proved to play an important role in the early stages of growth and embryonic development. In the process of maturation, it plays an important regulatory role, and because of its important role in the reproductive process, it has become a hot spot in the research of animal reproductive biology. At present, the research on these two genes in rabbits is still very few, and the understanding of its mechanism is not deep. This study is based on the previous work in the laboratory. The rabbits cloned the ZAR1 and GDF9 genes and analyzed the related bioinformatics. In order to detect the difference in the expression of different tissues between the high and low yield New Zealand white rabbits, ZAR1 and GDF9 were detected by real-time fluorescence quantitative PCR, and the two genes were detected in the heart, liver, spleen, lung, kidney, ovary and uterus, respectively. The mechanism of action and tissue expression in New Zealand white rabbits were explained from the transcriptional expression level of ZAR1 and GDF9 genes. The following experimental results were obtained through the above methods: 1, specific primers were designed according to the ZAR1m RNA and genome sequence published on NCBI, and the ZAR1 gene was amplified from New Zealand white rabbit kidney by 1-2. Exon sequence, cross 2-4 exon sequence, exon 4 and 3 'flanking sequence, 141357 and 338bp respectively. After splicing and integration, 709bp. based on the published GDF9m RNA and genome sequence on NCBI, designed specific primers, and amplified the 5' side wing and exon 1 sequence from the New Zealand white rabbit liver, and the partial sequence of exon 2. 796bp and 614bp.2, using bioinformatics related software to analyze the homology of New Zealand white rabbit ZAR1 nucleotide sequence and other species. The results showed that the consistency of C DNA sequence of ZAR1 gene was 100%, 91%, 88%, 88% and 87% respectively, and the consistency with mice and rats was 86%, 87%, respectively. The consistency between the zebrafish and the Xenopus Xenopus was 76%, respectively. 82%. compared the amino acid sequence translated by the ZAR1c DNA sequence in the Gen Bank database, and found that the consistency of the ZAR1 amino acid sequences of the published rabbits, people, mice and rats were 100%, 84%, 93%, 94% respectively, and the consistency with the cattle and pigs were 97%, and the consistency with zebrafish was 89%, and that of the zebrafish was 89%. The conformance of Xenopus laevis was 96%.3, and the nucleotide homology of New Zealand white rabbit GDF9 gene and other species was analyzed by bioinformatics software. The results showed that the consistency of C DNA sequence of GDF9 gene was 99%, 79%, 79%, 77%, 76% and 75%, respectively, and 72% in mice and rats. The conformance of zebrafish was 68%. The homology of the amino acid sequence translated from the GDF9c DNA sequence was compared with the African Xenopus 73%., and the homology of the GDF9 amino acid to the corresponding sequence of the published rabbit, human, monkey, mouse, rat, and pig was 97%, 71%, 72%, 66%, 65%, 69%, respectively, and was 68% with the cattle and sheep. The conformance of zebrafish was 43%. The expression of ZAR1 and GDF9 genes in the heart, liver, spleen, lungs, kidneys, ovary and uterus were studied with 49%.4 and semi quantitative RT-PCR. The results showed that there were m RNA expressions of ZAR1 and GDF9 genes in the above-mentioned tissues, indicating that ZAR1 and GDF9 m RNA are in New Zealand. The white rabbit is widely expressed and does not have ovarian specific.5. In high and low yield New Zealand white rabbits, the ZAR1 gene expresses the highest content in the lung tissue, the expression of the spleen and kidney and the lowest expression in the heart tissue, while the GDF9 gene is the highest in the ovarian and liver tissues, but in the heart and spleen. The difference in the expression of the lowest.6 and the same tissue in the high and low yield groups showed that the relative expression of the ZAR1 gene was significantly different in the liver, the kidneys and the ovary (P0.01), the heart and the uterus (P0.05), and there was no significant difference in the spleen and lungs (P0.05), while the GDF9 gene was stored in the liver and uterus (P0.01), the heart, spleen, and ovarian tissue (P0.05). In the significant difference, in the lungs and kidneys, there was no significant difference in expression (P0.05).7, the GDF9 and ZAR1 genes were high, and the relative expression of the low yield New Zealand white rabbits showed that the relative expression of GDF9 gene in the heart, liver, kidney, ovary and uterus was significantly higher than that of the ZAR1 gene.
【学位授予单位】:河南农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S829.1
【相似文献】
相关期刊论文 前10条
1 吴雪;袁金铎;赵楠楠;杨桂文;安利国;;涡虫的基因沉默作用[J];生物技术通报;2013年03期
2 孙国凤;导入耐过氧化氢兰草基因促进植物生长[J];生物技术通报;1999年05期
3 叶爱华,吴延军,杨莉;基因沉默及其克服策略[J];中国农学通报;2003年01期
4 佟玲;侯杰;崔国新;许志茹;李玉花;;基因沉默在农业生产中的应用及其相关因子的研究进展[J];植物生理学报;2011年07期
5 李飞;吴益东;韩召军;;害虫的基因沉默控制[J];昆虫知识;2010年05期
6 万小荣;莫爱琼;杨妙贤;余土元;;植物基因沉默机制研究进展[J];安徽农业科学;2011年17期
7 丁锦平;;棉花病毒诱导基因沉默体系构建[J];江苏农业科学;2013年06期
8 刘忠慧;储明星;陈国宏;;促性腺激素释放激素基因及其受体基因的研究进展[J];中国畜牧兽医;2006年03期
9 赵先海;黄浩;邓小梅;袁金英;湛欣;;对一种多基因组装方法的改进[J];中国农业大学学报;2014年03期
10 李成,张滨丽,李杰;RNAi技术的研究进展和发展前景[J];东北农业大学学报;2005年03期
相关会议论文 前10条
1 袁诚;李萃;马金;韩成贵;于嘉林;Andrew Jackson;李大伟;;大麦条纹花叶病毒诱导的基因沉默载体系统的改造及其应用[A];中国植物病理学会2009年学术年会论文集[C];2009年
2 陈翔;;RNAi:从科学家的剪九到医师的治疗手段[A];中华医学会第十二次全国皮肤性病学术会议论文集[C];2006年
3 王海光;李自超;;植物干旱胁迫应答基因及其产物研究进展[A];2003年全国作物遗传育种学术研讨会论文集[C];2003年
4 施定基;张文俊;邓元告;冉亮;康瑞娟;赵兴贵;张越南;;藻类基因工程的一些进展[A];中国海洋生化学术会议论文荟萃集[C];2005年
5 陈爱葵;李梅红;;RNAi—基因沉默[A];遗传学进步与人口健康高峰论坛论文集[C];2007年
6 项晓琼;;RNAi技术在毒理学中的应用[A];中国药理学会毒理专业委员会第十次学术会议论文摘要汇编[C];2004年
7 刘家云;郝晓柯;李庆霞;马龙洋;温伟红;贾林涛;杨安钢;;靶向X区的siRNA抑制HBV基因的表达和复制[A];第九届西北五省(区)检验医学学术会议论文汇编[C];2005年
8 焦锋;楼程富;;基因在植物多倍体中的进化研究进展[A];中国蚕学会第三届青年学术研讨会暨浙江省第二届青年学术论坛——蚕桑分论坛论文集(上册)[C];2001年
9 吴丽娟;陈伟;康格非;蒋建新;朱佩芳;;锌指蛋白A20基因沉默载体研究与初步应用[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年
10 徐新云;毛侃琅;毛吉炎;;CYP3A4基因沉默和高表达对三氯乙烯致肝细胞毒性的影响[A];中国毒理学会第六届全国毒理学大会论文摘要[C];2013年
相关重要报纸文章 前10条
1 Esha Dey Pallavi Ail 编译 硕军;“基因沉默”先导者[N];医药经济报;2013年
2 南方日报记者 张胜波 林亚茗 通讯员 粤科宣;“广东是成果产业化好地方”[N];南方日报;2011年
3 记者 李荔;朱冰:环境也可以改变基因[N];北京科技报;2012年
4 记者 毛黎;科学家成功解开大量基因沉默之谜[N];科技日报;2008年
5 医学博士 科学松鼠会成员 致桦;美丽的干扰[N];中国经营报;2010年
6 纪光伟;2006,最出彩的是基因[N];健康报;2006年
7 张田勘;基因编辑器被寄予厚望[N];中国医药报;2014年
8 张田勘;垃圾DNA并非垃圾[N];文汇报;2012年
9 记者 许琦敏;基因“梁祝悲剧”诱发血癌[N];文汇报;2007年
10 聂翠蓉编译;RNAi:生物技术的蓝月亮[N];科技日报;2003年
相关博士学位论文 前10条
1 张兴坦;烟草MAPK基因的功能研究[D];重庆大学;2015年
2 Chabungbam Orville Singh(奥维尔);家蚕BmPLA2和BmRab3基因的分子克隆、表达和功能研究[D];浙江大学;2014年
3 张凌娣;同源序列高剂量异常表达及病毒编码蛋白对基因沉默的作用[D];中国农业大学;2004年
4 袁佐清;东亚三角涡虫DjPreb和DjStag基因表达与功能分析[D];中国海洋大学;2010年
5 邱庆明;若干生精细胞相关基因功能初步研究[D];中南大学;2009年
6 陈婷;果蝇中染色体乙酰化与去乙酰化修饰及其与热休克基因表达的关系[D];东北师范大学;2002年
7 申彦森;基于内含子剪切的人工miRNA结构和靶向位点与基因沉默效率的关系研究[D];武汉大学;2009年
8 姜国勇;番茄Tm-2~2基因在烟草中的表达及其编码蛋白特异氨基酸决定对病毒的抗性[D];福建农林大学;2003年
9 刘春艳;组蛋白乙酰转移酶CBP/p300对人白细胞介素-5基因表达调控的影响及其分子机制研究[D];东北师范大学;2004年
10 麻鹏达;基因沉默抑制子P1/HC-Pro和P25在瞬时体系中的作用[D];东北师范大学;2007年
相关硕士学位论文 前10条
1 孔令广;反向重复结构不同位置侧翼序列诱导的基因沉默差异比较[D];山东农业大学;2009年
2 郑璐平;番茄抗叶霉菌相关基因的鉴定及TRV 16K基因的功能分析[D];福建农林大学;2007年
3 耿文君;东亚三角涡虫DjSparc-like基因的进化、表达以及功能分析[D];山东理工大学;2009年
4 成磊;miRNA介导靶基因沉默的分析与识别[D];南京航空航天大学;2011年
5 李志清;家蚕BmMet基因的鉴定、克隆及功能分析[D];西南大学;2009年
6 巩校东;比较分析大肠杆菌K-12中的必要基因与非必要基因[D];西北农林科技大学;2007年
7 施伟;基于黄瓜花叶病毒的基因沉默载体优化[D];浙江理工大学;2012年
8 聂敏;东亚三角涡虫DjRhoA基因的表达及功能分析[D];山东理工大学;2011年
9 彭丽娜;家蚕BmDichaete基因的克隆及功能初探[D];西南大学;2012年
10 吕坤;棉花病毒诱导的基因沉默体系的建立及其在棉花抗黄萎病中的应用[D];南京农业大学;2013年
,本文编号:2133805
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2133805.html