基于无线传感器网络的产前母猪行为监测系统
发布时间:2018-09-03 20:13
【摘要】:目前大规模集约化母猪养殖业主要是依靠饲养员对产前母猪行为的连续观察,通过直觉和经验从而判断母猪的分娩时间。但是该技术不仅要求大量人力,效率低下,而且往往会出现人为疏忽造成刚分娩的仔猪死亡现象。针对这一问题,设计了一种基于无线传感器网络的产前母猪行为特征监测系统。该系统通过给母猪佩戴加速度传感器采集节点,实时监测母猪的行为,并通过支持向量机分析加速度数据并建立模型,分类识别母猪的站立、躺卧、进食、筑巢等典型行为特征。试验结果表明,系统能够实时连续的记录母猪产前行为特征参数,可准确识别出母猪的四种典型行为,准确率为93.3%。
[Abstract]:At present the intensive sows breeding industry mainly depends on the continuous observation of the behavior of prenatal sows by breeders and judges the delivery time of sows by intuition and experience. But this technique not only requires a lot of manpower and inefficiency, but also leads to the death of piglets. In order to solve this problem, a Prenatal sows behavior monitoring system based on wireless sensor network (WSN) is designed. The system can monitor sows' behavior in real time by using acceleration sensor to collect nodes, and analyze acceleration data by support vector machine (SVM) and establish models to classify and identify sows' standing, lying down, feeding, and so on. Typical behavioral characteristics such as nesting. The results show that the system can record the characteristic parameters of sows' prenatal behavior continuously and accurately identify the four typical behaviors of sows, and the accuracy is 93.33.
【作者单位】: 陕西科技大学电气与信息工程学院;
【基金】:陕西省农业科技创新与攻关项目(2015NY028) 西安市未央区科技计划项目(201305) 陕西科技大学博士科研启动基金(BJ13-15)
【分类号】:S828;S818.9
[Abstract]:At present the intensive sows breeding industry mainly depends on the continuous observation of the behavior of prenatal sows by breeders and judges the delivery time of sows by intuition and experience. But this technique not only requires a lot of manpower and inefficiency, but also leads to the death of piglets. In order to solve this problem, a Prenatal sows behavior monitoring system based on wireless sensor network (WSN) is designed. The system can monitor sows' behavior in real time by using acceleration sensor to collect nodes, and analyze acceleration data by support vector machine (SVM) and establish models to classify and identify sows' standing, lying down, feeding, and so on. Typical behavioral characteristics such as nesting. The results show that the system can record the characteristic parameters of sows' prenatal behavior continuously and accurately identify the four typical behaviors of sows, and the accuracy is 93.33.
【作者单位】: 陕西科技大学电气与信息工程学院;
【基金】:陕西省农业科技创新与攻关项目(2015NY028) 西安市未央区科技计划项目(201305) 陕西科技大学博士科研启动基金(BJ13-15)
【分类号】:S828;S818.9
【参考文献】
相关期刊论文 前10条
1 吴明丽;;母猪分娩期管理技术研究[J];吉林畜牧兽医;2016年04期
2 洪万帆;苏淑靖;;基于无线传感器网络的数据采集系统设计[J];电子器件;2016年01期
3 闫丽;沈明霞;姚文;陆明洲;刘龙申;肖安磊;;基于MPU6050传感器的哺乳期母猪姿态识别方法[J];农业机械学报;2015年05期
4 沈维政;郑爽;初永良;孔庆明;;基于ADXL345的奶牛活动量采集系统设计[J];东北农业大学学报;2014年10期
5 郭东东;郝润芳;吉增涛;杨信廷;周超;梁旭姣;;基于三轴加速度传感器的山羊行为特征分类与识别[J];家畜生态学报;2014年08期
6 沈明霞;刘龙申;闫丽;陆明洲;姚文;杨晓静;;畜禽养殖个体信息监测技术研究进展[J];农业机械学报;2014年10期
7 汪海燕;黎建辉;杨风雷;;支持向量机理论及算法研究综述[J];计算机应用研究;2014年05期
8 温长吉;王生生;赵昕;王_,
本文编号:2221052
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2221052.html