mTOR信号通路调控猪瘟病毒复制的机制研究
[Abstract]:Classical swine fever (CSF) is a serious infectious disease caused by classical swine fever virus (CSFV), which is characterized by high fever, hemorrhage and immunosuppression. It is an epidemic disease that must be reported by the World Organization for Animal Health (OIE). It has caused tremendous damage to the pig industry in China and even the world. CSFV belongs to the genus Pestivirus of Flaviviridae. It is a single stranded positive-stranded RNA virus. Although the pathogenesis of CSFV has been studied, the mechanism of infection and replication of CSFV in host cells and the pathogenesis of immune escape are still poorly understood. Continuous infection requires the use of key signaling pathways that regulate protein synthesis, energy metabolism, and cell survival and growth in host cells. The mammalian target of rapamycin (mTOR) signaling pathway links the processes from induction energy and growth factors to regulation of cell survival, growth and macromolecule synthesis and metabolism. Infection replication plays an important role in viral replication. However, the relationship between CSFV and mTOR signaling pathway has not been clearly reported. Therefore, this study aims to elucidate the regulation of CSFV on mTOR signaling pathway and the molecular mechanism of mTOR signaling pathway on CSFV replication, providing an explanation for CSFV replication and persistent infection from the perspective of mTOR. In this study, compared with non-CSFV-infected cells, CSFV-infected ST cells significantly inhibited the activation of Akt/mTOR signaling pathway. The inhibition was most significant at 6-24 h, then gradually recovered until 48 h. In order to investigate the effect of Akt/mTOR signaling pathway on CSFV self-replication, we used mTOR inhibitor rapamycin and activator insulin to change the activity of host cell mTOR pathway and infected CSFV, Western-blot and fluorescence. Quantitative PCR and other results showed that rapamycin inhibited cell proliferation but significantly promoted CSFV replication within 24 hours; insulin promoted cell proliferation but significantly inhibited CSFV replication; it is noteworthy that this regulatory trend did not exist at 48 hours; we speculated that CSFV infection inhibited mTOR/S6K1, resulting in S6K1 inducing Akt negative reaction via IRS (insulin receptor). Subsequently, we further investigated the effect of Akt upstream of mTOR on CSFV replication; Akt specific inhibitor (LY294002) was used to inhibit Akt activity; and Akt activator (SC79) was used to activate Akt to infect CSFV. Fluorescence quantitative PCR results showed that it was inhibited compared with untreated ST cells. Akt-producing activity could continuously up-regulate the copy number of CSFV genome within 72 hours, while activation of Akt could continuously decrease the copy number of CSFV genome. These results suggest that the Akt/mTOR signaling pathway can negatively regulate the replication of CSFV, and that ST cells infected with CSFV may regulate virus replication and maintain cell homeostasis by inducing Akt negative feedback activation. Two effector molecules ULK1 and S6K1, which regulate autophagy and protein synthesis downstream of the pathway, were used as entry points. TEM, Western-blot, confocal microscopy, LC3 double fluorescent autophagy lentivirus, IFA detection of virus titer and fluorescence quantitative PCR proved that CSFV infection could enhance the autophagy of ST cells. K1 inhibitors inhibit or activate mTOR/ULK1 activity, indicating that autophagy is significantly promoted or inhibited, whereas virus replication is correspondingly promoted or inhibited. It is demonstrated that CSFV induces cell autophagy through mTOR/ULK1-dependent signaling pathway and promotes virus replication. On the other hand, double luciferase reporter gene system is used to construct CSFV-containing interior. The fluorescein enzyme recombinant vector (CSFV-IRES) at the ribosomal entry site (IRES) was used to demonstrate that the overexpression and interference of S6K1 could inhibit and promote the drive activity of CSFV-IRES protein. The results of viral titer detection and fluorescence quantitative PCR showed that overexpression and interference of S6K1 could inhibit and promote CSFV-IRES protein. FV replication. Immunocoprecipitation, ribosome isolation and fluorescence quantitative PCR confirmed that CSFV-infected ST cells inhibited the phosphorylation of mTOR/S6K1, thereby facilitating the binding of S6K1 to eukaryotic initiation factor 3 (elF3A), releasing CSFV-IRES to compete with eIF3 to bind to 40S ribosomes and promoting the translation of viral mRNA. Akt/mTOR signaling pathway was inhibited. CSFV infection usually does not inhibit cell proliferation and apoptosis in vitro. Therefore, in combination with the above studies, we explore whether CSFV infection inhibits Akt/mTOR signaling pathway by inducing Akt negative feedback to maintain cell proliferation and anti-apoptosis in order to provide stable details for virus replication. Akt phosphorylation was detected by Western-blot. The results showed that Akt phosphorylation decreased first and then recovered. It was further confirmed that CSFV-infected ST cells could induce Akt negative feedback activation. Using Akt inhibitor LY294002 alone or in conjunction with CSFV, the proliferation of ST cells was detected by SRB assay. The results showed that inhibition of Akt activity and infection with CSFV increased significantly compared with inhibition of Akt alone or infection with CSFV alone. Once Akt was inhibited by the inhibitor, the negative feedback activation of Akt induced by CSFV was inhibited accordingly, so the cell proliferation could not be maintained. Next, the results of cell apoptosis detection showed that the rate of cell apoptosis induced by inhibiting Akt activity and infecting CSFV at the same time was higher than that induced by inhibiting Akt alone or CSFV alone. Finally, the results of fluorescence quantitative PCR assay showed that continuous blockade of Akt for 72 hours could continuously increase the number of viral genomic copies compared with single infection of CSFV cells, suggesting that CSFV infection could cause negative feedback activation of Akt and consequently maintain the disease. These results fully confirm that CSFV-infected ST cells induce Akt negative feedback activation and can maintain cell survival and virus replication. In conclusion, this study fully confirms that CSFV-infected host cells can maintain virus replication and cell survival by hijacking the mTOR signaling pathway, providing a basis for the prevention and treatment of swine fever with Akt/mTOR activation. New targets and ideas.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S852.651
【相似文献】
相关期刊论文 前10条
1 潘智;张令强;蒋继志;贺福初;;mTOR的研究进展[J];细胞生物学杂志;2006年03期
2 Nan Wang;Ruijuan Wu;Xiaoheng Cheng;Jin Jin;Zongchao Jia;Jimin Zheng;;New insights into mTOR structure and regulation[J];Chinese Science Bulletin;2014年24期
3 陈j,张红锋;mTOR信号通路与癌症治疗[J];生命的化学;2005年02期
4 张超;章雄文;丁健;;Akt-mTOR的互动与癌症的发生[J];生命科学;2007年01期
5 张娟;李欣;杨丽;田朗;邢晓为;黄利华;杨作成;;柯萨奇病毒B3感染HeLa细胞后mTOR通路部分信号蛋白表达的变化[J];中国现代医学杂志;2014年11期
6 林骏;白晓春;;mTOR信号通路与“炎-癌”转变[J];生物化学与生物物理进展;2014年01期
7 王怡;张姣姣;杨炜蓉;王莉娟;王鲜忠;;哺乳动物雷帕霉素靶蛋白(mTOR)信号通路与生理功能的调节研究进展[J];中国畜牧兽医;2012年04期
8 郑杰;;mTOR信号途径与肿瘤[J];生命科学;2006年03期
9 刘家宏;徐小洁;符静;范忠义;吕朝晖;陆菊明;肖文华;朱建华;叶棋浓;;慢病毒介导的mTOR敲低肝癌细胞株HepG2的构建及初步功能检测[J];生物技术通讯;2013年04期
10 陈洪菊;屈艺;母得志;;mTOR信号通路的生物学功能[J];生命的化学;2010年04期
相关会议论文 前10条
1 Huayong Zhou;Yi Wang;Lanping Ma;Xin Wang;Lin Chen;Yi Chen;Jian Ding;Tao Meng;Linhua Meng;Jingkang Shen;;Novel indazole-based derivatives as PI3K/mTOR dual inhibitors[A];2012长三角药物化学研讨会论文集[C];2012年
2 ;Activation of mTOR Pathway Confers Adverse Outcome in Nonsmall Cell Lung Carcinoma[A];中华医学会第五届全国胸部肿瘤及内窥镜学术会议论文汇编[C];2011年
3 韩进松;陈颖;宋云龙;吕加国;周有骏;朱驹;;Structure-Based Design,Synthesis,and Antitumor Activities of Novel Water-soluble Dual Inhibitors of PI3K and mTOR[A];2012长三角药物化学研讨会论文集[C];2012年
4 姜伟;王修启;束刚;江青艳;杨舟;;mTOR信号通路及其对骨骼肌蛋白质合成的影响[A];全国动物生理生化第十一次学术交流会论文摘要汇编[C];2010年
5 管坤良;;The TSC-mTOR pathway in cell growth and cancer[A];2009医学前沿论坛暨第十一届全国肿瘤药理与化疗学术会议论文集[C];2009年
6 Hai Huang;Xin Liu;;The molecular mechanism of apoptosis in human gastric cancer SGC-7901 cells induced by evodiamine inhibition mTOR signal pathway[A];中国生物化学与分子生物学会第十届会员代表大会暨全国学术会议摘要集[C];2010年
7 孟祥斐;郁金泰;谭兰;;靶向作用于mTOR治疗癫痫[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年
8 曾军英;胡兴;皮建辉;;Cytotoxic Elimination of Chemoresistant Pancreatic Cancer Stem Cells by Combined Inhibition of RON and mTOR Signaling Pathways[A];湖南省生理科学会2013年度学术年会论文摘要汇编[C];2013年
9 ;mTOR enhancement of STIM1-mediated store-operated Ca~(2+) signaling constrains tumor development[A];第九届全国钙信号和细胞功能研讨会论文摘要集[C];2012年
10 ;mTOR.rictor Is Required by the Development of Mouse One-cell Stage Embryos[A];第九届全国酶学学术讨论会暨邹承鲁诞辰85周年纪念会论文摘要集[C];2008年
相关重要报纸文章 前2条
1 驻京记者 李瑶;mTOR提供癌症治疗新思路[N];医药经济报;2010年
2 本报记者 白毅;mTOR信号通路为肿瘤治疗提供新靶点[N];中国医药报;2010年
相关博士学位论文 前10条
1 刘伦志;肾素抑制剂对高糖诱导足细胞凋亡与mTOR表达的影响[D];武汉大学;2014年
2 李舒展;PGAM1在mTOR诱导肿瘤有氧糖酵解中的作用及机制研究[D];天津医科大学;2015年
3 丛江琳;MiR-634通过调控mTOR信号途径抑制宫颈癌细胞增殖及诱导凋亡的实验研究[D];山东大学;2015年
4 胡越;mTOR和细胞自噬在LPS诱导的急性肺损伤中分子调控机制的研究[D];浙江大学;2016年
5 陈玲琳;调控mTOR信号通路对癫痫的作用及其机制研究[D];浙江大学;2016年
6 黄畅;基于mTOR信号通路探讨艾灸及艾烟对APP/PS1双转基因小鼠认知障碍的影响及机制研究[D];北京中医药大学;2017年
7 苗丽君;慢病毒介导的mTOR靶向抑制对肺腺癌A549细胞生物学功能的影响[D];郑州大学;2012年
8 曾梅;自我吞噬及mTOR信号在小鼠神经瘤细胞分化过程中的作用[D];中国科学技术大学;2008年
9 周乐杜;PI3K/Akt/mTOR信号通路在肝细胞癌发病机制中的作用及靶向干预研究[D];中南大学;2010年
10 张慧;蛋白摄入水平对早产学习认知能力及mTOR/S6K通路的影响[D];南方医科大学;2013年
相关硕士学位论文 前10条
1 闫斌;血清mTOR检测对消化系统恶性肿瘤患者的临床意义[D];内蒙古大学;2012年
2 王艮波;mTOR通路在氯化亚铁诱导的外伤性癫痫大鼠模型额叶皮质及海马中的表达研究[D];福建医科大学;2015年
3 罗荣奎;肝脏血管平滑肌脂肪瘤的临床病理特征及mTOR通路分析[D];复旦大学;2014年
4 顾兵;脑出血后mTOR信号通路激活及雷帕霉素脑保护作用机制研究[D];苏州大学;2015年
5 张剑;食管鳞状细胞癌中mTOR表达及其与癌症恶性程度和患者机体免疫反应水平相关性研究[D];青岛大学;2015年
6 周璇;mTOR信号通路在小鼠B淋巴细胞成熟及抗体产生中的作用及其机制[D];南方医科大学;2014年
7 杨雪帆;慈菇多糖对小鼠免疫功能及mTOR信号通路的影响[D];福建医科大学;2015年
8 夏传友;组蛋白甲基化酶SMYD3在前列腺癌中mTOR通路的机制研究[D];山东大学;2016年
9 王嘉祯;食管鳞癌细胞中LSD1与mTOR通路相互调控作用研究[D];郑州大学;2016年
10 张海环;猪小肠赖氨酸转运体对氮源的响应规律及mTOR信号通路的调控研究[D];吉林农业大学;2016年
,本文编号:2233893
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2233893.html