TAK1信号通路在创伤性脑损伤中的作用机制研究
本文选题:TBI + TAK1 ; 参考:《南京大学》2013年硕士论文
【摘要】:第一部分 题目:创伤性脑损伤后TAKl的表达时相和定位 目的:研究TAK1在TBI后动态表达和分布情况,探讨TAK1通路和TBI的相互关系,以期为TBI的治疗提供一新的治疗靶点。 方法:1、实验模型建立和分组:选择健康成年SD雄性大鼠60只,体重为250-300g,采用改良的Feeney法于右侧开颅制作TBI模型。将动物按损伤不同时间点分为6组,分别为假手术组、伤后1h组、伤后3h组、伤后6h组、伤后12h组、伤后24h组,各组动物均为10只。 2、TBI后TAK1及p-TAK1蛋白表达测定:按不同时间点分别提取大鼠挫伤灶周围皮层脑组织,采用western blot方法检测TAK1和p-TAK1蛋白的动态表达。 3、采用免疫组化法观察:TAK1在伤灶周围脑组织的表达和分布情况。 4、采用免疫荧光技术观察:TAK1在TBI后损伤灶周围皮层中不同细胞表达和分布情况。 结果:1、TBI组术后各时间点TAK1和p-TAK1的蛋白水平24h内持续升高,24h明显升高(p0.05); 2、免疫组化结果显示:假手术组中,TAK1在正常脑组织中有表达,主要分布于核周,外伤后胞浆表达量明显升高;荧光显微镜结果显示,在正常脑组织中,TAK1的表达主要位于神经元中,在星形胶质细胞中微量表达,损伤后TAK1在伤灶周围皮层的神经元和胶质细胞的胞浆中的表达量明显升高。 结论:1、TAK1在TBI早期即可被激活。 2、TBI后TAK1表达主要位于神经元和胶质细胞胞浆中,且其激活的区域与脑外伤后损伤区域相一致。 第二部分 题目:OZ对TBI的神经保护作用及机制研究 目的:通过研究OZ对TBI后TAK1通路的调控,探讨OZ对TBI的神经保护作用及其具体分子调控机制,以期为临床治疗TBI提供新的策略,同时也为OZ临床应用提供理论基础和实验依据 方法:1、实验动物模型和分组:采用健康SD大鼠,运用改良的Feeney法于右侧开颅制作TBI模型。实验动物分组:大鼠分为五组:假手术组、外伤组、外伤+溶剂组、外伤+药物组(2μg,10μg和20μg)。溶剂和药物在损伤后10mim或3h通过侧脑室注射5μ1剂量。 2、神经功能评分:采用平衡木实验评价实验动物TBI后7天内神经功能缺损状况。 3、神经元凋亡检测:取各组实验动物大脑组织,石蜡固定,切片,TUNEL法检测神经元凋亡情况。 4、炎性因子检测:取各组伤灶周围脑组织,采用ELISA法检测炎性因子的表达量; 5、TAK1活性及通路下游NF-κB和AP-1的活性:取各组实验动物伤灶周围皮层组织,采用western blot方法检测TAK1和p-TAK1的蛋白含量,EMSA方法检测NF-κB和AP。1的活性。 6、尼氏染色法检测:外伤后7天神经元的存活情况。 结果:1、与假手术组相比,TBI后大鼠表现出明显的神经功能缺损、神经元凋亡,两组间有显著性差异(P0.05);而OZ治疗能明显改善大鼠神经功能评分、减轻神经元的凋亡,两组间有显著性差异(P0.05)。 2、TBI后损伤灶周围脑组织中TAK1蛋白表达增强;0Z明显下调TAK1蛋白表达。 3、与TBI组相比,OZ明显降低了NF-kB和AP-1的活性。 4、假手术组大鼠脑组织中TNF-α和IL-1p蛋白水平较低;脑损伤组中TNF-α和几.1p蛋白水平明显上调,与TBI组相比,TNF-α和IL.1p蛋白水平明显下降。 5、与假手术组相比,TBI后7天尼氏染色损伤神经元个数明显增加,而OZ治疗能明显改善神经元的损伤。 结论:1、OZ能减轻TBI后继发性损伤,对TBI有神经保护作用。 2、OZ神经保护作用是通过抑制NF-κB和AP.1通路,抑制炎性因子的产生从而减轻炎性损伤来实现。 3、以TAK1为靶点的药物治疗对临床TBI的防治具有良好的应用前景。 第三部分 题目:TAKl在TBI患者挫伤区皮层的表达和定位 目的:研究TAK1在TBI患者挫伤区皮层的表达及分布。 方法挫伤区皮层标本来自5例TBI患者,伤后取标本时间24h,阴性对照组为3例肿瘤患者的正常脑组织(由于手术入路要求切除的),通过免疫组织化学和免疫荧光方法检测TAK1在挫伤皮层的表达和定位。 结果:与阴性对照组相比,免疫组化结果显示挫伤区皮层TAK1的表达量明显升高;免疫荧光结果显示TAK1在TBI患者挫伤区皮层的神经元和胶质细胞中均有表达。 结论:TAK1在挫伤区皮层的表达量升高,提示针对TAK1的靶点治疗在TBI的临床治疗中具有重要的临床应用价值。
[Abstract]:Part one
Title: expression and location of TAKl after traumatic brain injury
Objective: To study the dynamic expression and distribution of TAK1 after TBI, and to explore the relationship between TAK1 pathway and TBI, in order to provide a new therapeutic target for TBI treatment.
Methods: 1, the establishment and grouping of the experimental model: 60 healthy adult SD male rats were selected and the weight was 250-300g. The modified Feeney method was used to make the TBI model on the right craniotomy. The animals were divided into 6 groups according to the different time points of injury. They were sham operation group, 1H group after injury, 3h group after injury, 6h group after injury, 12h group after injury, group 24h after injury, all the animals of each group were 1. 0.
2, after TBI, the expression of TAK1 and p-TAK1 protein was measured. The brain tissue around the rat contusion was extracted at different time points, and the dynamic expression of TAK1 and p-TAK1 protein was detected by Western blot.
3, immunohistochemical staining was used to observe the expression and distribution of TAK1 in the brain tissue around the lesion.
4, immunofluorescence technique was used to observe the expression and distribution of TAK1 cells in the cortex around the lesion after TBI.
Results: 1. The protein levels of TAK1 and p-TAK1 in group TBI increased continuously during 24h, and 24h increased significantly (P0.05).
2, the results of immunohistochemistry showed that in the sham operation group, TAK1 was expressed in normal brain tissue, mainly distributed in the perinuclear tissue, and the expression of cytoplasm was significantly increased after trauma. The results of fluorescence microscopy showed that in normal brain tissue, the expression of TAK1 was mainly in the neurons, and in the astrocytes, the TAK1 was in the surrounding skin after injury. The expression levels of neurons and glial cells in the cytoplasm increased significantly.
Conclusion: 1, TAK1 can be activated in the early stage of TBI.
2, the expression of TAK1 was mainly located in cytoplasm of neurons and glial cells after TBI, and the region of activation was consistent with that of post traumatic brain injury.
The second part
Title: the neuroprotective effect and mechanism of OZ on TBI
Objective: To explore the neuroprotective effect of OZ on TBI and its specific molecular regulation mechanism by studying the regulation of OZ on the TAK1 pathway after TBI, so as to provide a new strategy for the clinical treatment of TBI, and to provide theoretical basis and experimental basis for the clinical application of OZ.
Methods: 1, experimental animal models and groups: using healthy SD rats, using the modified Feeney method to make the TBI model on the right craniotomy. Experimental animals were divided into five groups: sham operation group, trauma group, trauma + solvent group, trauma + drug group (2 mu g, 10 mu g and 20 micron g). The solution and drug were injected 5 mu through the lateral ventricle of 10mim or 3h after injury. Dose.
2, neurological function score: the balance function test was used to evaluate the neurological deficit in 7 days after TBI.
3, neuron apoptosis detection: take brain tissues of experimental animals, paraffin fixed and slice, and detect apoptosis of neurons by TUNEL.
4, inflammatory factors were detected: the brain tissue around each lesion was collected and the expression of inflammatory factors was detected by ELISA.
5, the activity of TAK1 and the activity of NF- kappa B and AP-1 downstream of the pathway: the protein content of TAK1 and p-TAK1 was detected by Western blot method, and the activity of NF- kappa B and AP.1 were detected by Western blot method.
6, Nissl staining was used to detect the survival of neurons on the 7 day after trauma.
Results: 1, compared with the sham operation group, the rats showed obvious nerve function defect and neuron apoptosis after TBI, and there was significant difference between the two groups (P0.05), and OZ treatment could obviously improve the neural function score of rats and reduce the apoptosis of the neurons. There was significant difference between the two groups (P0.05).
2, after TBI, the expression of TAK1 protein was increased in the brain tissue around the lesion. 0Z significantly decreased the expression of TAK1 protein.
3, compared with group TBI, OZ significantly reduced the activity of NF-kB and AP-1.
4, the level of TNF- alpha and IL-1p protein in the rat brain tissue of the sham operation group was low, and the level of TNF- alpha and several.1p protein in the brain injury group was obviously up, and the level of TNF- alpha and IL.1p protein decreased significantly compared with the TBI group.
5, compared with the sham operation group, the number of Nissl stained neurons increased significantly on the 7 day after TBI, while OZ treatment significantly improved neuronal damage.
Conclusion: 1, OZ can alleviate secondary injury after TBI and has neuroprotective effect on TBI.
2, the neuroprotective effect of OZ is achieved by inhibiting the NF- kappa B and AP.1 pathway, inhibiting the production of inflammatory factors and reducing inflammatory injury.
3, TAK1 targeted drug therapy has a good application prospect in the prevention and treatment of clinical TBI.
The third part
Title: expression and localization of TAKl in the contusion cortex of TBI patients
Objective: To study the expression and distribution of TAK1 in the contusion area of TBI patients.
Methods the cortical specimens from the contusion area were from 5 patients with TBI. The time was 24h after injury, and the normal brain tissue of the negative control group was 3 cases of the tumor patients (due to the surgical procedure). The expression and location of TAK1 in the contusion cortex were detected by immunohistochemistry and immunofluorescence.
Results: compared with the negative control group, the immunohistochemical results showed that the expression of TAK1 in the contusion area was significantly increased, and the results of immunofluorescence showed that TAK1 was expressed in the neurons and glia cells in the contusion area of TBI patients.
Conclusion: the expression level of TAK1 in the cortex of the contusion area is higher, suggesting that targeted therapy for TAK1 has important clinical value in the clinical treatment of TBI.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:R651.15
【共引文献】
相关期刊论文 前10条
1 陈大帅;周思远;唐宏智;李瑛;;针刺调节核转录因子-κB信号通路的实验研究进展[J];中华中医药杂志;2013年10期
2 肖爱娇;罗小泉;;艾灸对脑缺血再灌注损伤模型大鼠大脑皮质NF-κB p65蛋白表达的影响[J];中华中医药杂志;2013年12期
3 王靖坤;王顺妮;陈红岩;范薇薇;闵太善;卢大儒;陈浩明;;慢病毒介导的Jab1基因表达干扰在乳腺癌细胞中功能的初步研究[J];复旦学报(自然科学版);2013年06期
4 朱海涛;林江凯;;颅脑创伤后神经炎症反应中的Toll样受体[J];创伤外科杂志;2014年01期
5 方梅荣;金英顺;金吉哲;崔镇花;金海峰;郑海兰;李锦姬;姜玉姬;金华;李灿;;骨桥蛋白和核转录因子在慢性环孢素A肾毒性中的作用[J];第二军医大学学报;2014年05期
6 马永达;王旭辉;陈强;;糖皮质激素调节创伤后神经元胞膜钙泵研究现状[J];创伤与急危重病医学;2015年01期
7 张文艳;孙宝飞;余资江;余彦;肖朝伦;罗时鹏;令狐艳;杨丹;;原花青素对小鼠脑缺血再灌注损伤的神经保护机制[J];贵阳医学院学报;2015年04期
8 赵卫海;海陈炼;余国栋;;血清TNF-αIL-1IL-6IL-8在急性颅脑损伤后含量变化及意义[J];中国实用神经疾病杂志;2013年16期
9 黄强;戴伟民;揭园庆;聂俊;王小芳;胡永亮;余小明;宋光太;金涛;吴来德;;衢州地区急性颅脑创伤患者院前及急诊救治现状分析[J];临床神经外科杂志;2013年04期
10 于建云;;多重性脑震荡及其后遗症研究进展[J];昆明医科大学学报;2013年10期
相关博士学位论文 前10条
1 高丽;血管紧张素-(1-7)在高血压及脑缺血损伤中的作用及机制研究[D];南京医科大学;2013年
2 陈寅萤;多维度多组分干预脑缺血药理机制的比较研究[D];中国中医科学院;2013年
3 冯秀丽;法氏囊活性肽的分离鉴定及其免疫调节作用机制研究[D];南京农业大学;2012年
4 杨子彦;三角帆蚌肽聚糖识别蛋白和谷胱甘肽硫转移酶的基因克隆和功能分析[D];华中科技大学;2013年
5 伍列林;Let-7g下调HMGA2抑制原发性肝细胞癌增殖、侵袭的作用及机制研究[D];中南大学;2013年
6 赵永博;SIRT1在创伤性脑损伤后的功能及机制研究[D];第四军医大学;2013年
7 杨尚武;Nek9和ERK8在小鼠卵母细胞成熟中的作用和在早期胚胎中定位[D];南方医科大学;2013年
8 秦文熠;电针及NBD多肽抑制局灶脑缺血/再灌注大鼠大脑皮质及海马CA1区炎症反应及其机制的研究[D];重庆医科大学;2013年
9 张峗;TLR2在骨髓间充质干细胞修复缺氧缺血性脑损伤中的作用及机制[D];重庆医科大学;2013年
10 周帅;载脂蛋白E及其基因多态性对星形胶质细胞缺氧性损伤的影响及相关机制研究[D];重庆医科大学;2013年
相关硕士学位论文 前10条
1 凌海平;中性粒细胞弹性蛋白酶在小鼠创伤性脑损伤后炎症反应中作用机制的研究[D];南方医科大学;2012年
2 钱伟;NF-κB在大鼠颅脑损伤后继发性脑损伤中的作用及意义[D];苏州大学;2013年
3 陈永兰;p38MAPK信号通路对小胶质细胞功能及NGF、TNFα分泌的影响[D];大连医科大学;2012年
4 王泽昒;西维因及主要降解产物1-萘酚对雄性罗非鱼雌激素效应的研究[D];南京农业大学;2011年
5 杨岳;中国荷斯坦牛C4A基因的遗传变异及其作为乳腺炎抗性标记的可行性分析[D];南京农业大学;2011年
6 马岩岩;三七皂甙成分对脂多糖诱导巨噬细胞炎性因子的影响及其机制的研究[D];暨南大学;2013年
7 罗流涛;骨髓间充质干细胞对阿霉素大鼠足细胞骨架F-actin的影响及机制探讨研究[D];福建医科大学;2013年
8 蔡理;脑损伤后JNK3基因参与神经细胞凋亡及神经功能恢复[D];昆明医科大学;2013年
9 赵明明;机械性神经元损伤后自噬的功能及Homer1a通过PI3K/Akt通路对其调节作用[D];第四军医大学;2013年
10 明月;绿僵菌丝氨酸—苏氨酸蛋白激酶基因MaSnf1和MaHog1的克隆及功能分析[D];重庆大学;2013年
,本文编号:1964663
本文链接:https://www.wllwen.com/yixuelunwen/jjyx/1964663.html