当前位置:主页 > 医学论文 > 口腔论文 >

SFRP2在调控人牙髓干细胞神经向分化中的作用研究

发布时间:2019-05-29 14:54
【摘要】:各种原因引起的视神经损伤性疾病在临床上较为常见,其中部分疾病会造成视神经进行性、不可逆性损伤,最终导致视力丧失。视神经细胞是一种终末分化细胞,再生能力差,导致损伤的视网膜神经难以修复再生,目前临床尚无有效方法治愈视神经疾病。近年来,应用干细胞治疗视网膜神经疾病这一方法极具前景,牙髓干细胞(dental pulp stem cells,DPSCs)由于其与视神经细胞同样来源于神经嵴,且较神经干细胞更易获得,而有望成为修复重建神经组织病损的种子细胞。目前研究认为,Notch及Wnt/β-catenin信号通路是脊椎动物视网膜神经发育所必需的。作为一种广泛表达于多个物种且在进化过程中高度保守的基因,Notch基因主要参与对细胞分化的抑制信号。Wnt/β-catenin信号的激活贯穿视网膜及视神经发育的整个过程,提示其在神经发育中起重要作用。分泌性卷曲蛋白2(secreted frizzled related protein 2,SFRP2)是一种Wnt信号通路抑制剂,同时也间接地参与了除Wnt信号以外的多个信号通路,如Notch及BMP信号通路等。SFRP2可与金属蛋白酶ADAM10结合,抑制Notch信号通路。已有研究表明SFRP2在神经形成过程中高表达,我们推测其可能通过抑制在干细胞增殖过程中发挥重要作用的Notch及Wnt信号通路,促进神经嵴来源的DPSCs向神经样细胞分化。为了验证上述假设,本课题借助多种细胞生物学和分子生物学手段,通过重组腺病毒载SFRP2基因体外转染人牙髓干细胞(human dental pulp stem cells,h DPSCs),同时利用h DPSCs同视网膜色素上皮(retinal pigment epithelium,RPE)细胞共培养法诱导h DPSCs的神经向分化,明确SFRP2在h DPSCs向神经样细胞分化过程中的作用,初步探讨视神经修复再生机制及临床应用前景。方法:从完整拔除的健康第三磨牙内分离牙髓组织,酶消化复合组织块法原代培养h DPSCs。取第3代h DPSCs,MTT法绘制其生长曲线,并通过成脂及成骨诱导检测其多向分化潜能。通过流式细胞术和细胞毒性实验(MTT法)筛选合适的病毒感染复数(multiplicity of infection,MOI)。采用800 particles/cell的Ad-SFRP2转染h DPSCs,RT-PCR检测SFRP2的表达;并将转染Ad-SFRP2的h DPSCs与人RPE细胞共培养诱导其神经向分化,q PCR检测神经相关基因GFAP、Nestin、MAP2、HES1、β-3tublin及ATOH7的表达。结果:倒置显微镜下见体外培养的第3代h DPSCs贴壁生长,形态规则,呈长梭形,核圆,位于中央。甲苯胺蓝染色可见细胞成集落生长,分别进行成脂和成骨诱导,35天油红O染色及21天茜素红染色可见脂滴及钙结节。生长曲线显示第4天细胞由滞留期进入对数生长期,第9天细胞进入平台期。转染Ad-EGFP的h DPSCs在转染后8 h镜下即可见绿色荧光蛋白的表达,转染Ad-SFRP2的h DPSCs在转染后72 h提取总m RNA,RT-PCR检测到SFRP2基因的表达。共培养及Ad-SFRP2转染结果表明,GFAP的表达早期表现为共培养诱导组高于转染组,晚期则表现转染组稍高表达;Nestin早期在共培养诱导组及转染组中表现为一定的上调趋势,晚期表达则呈下调趋势;β-3tublin的表达在共培养诱导组及转染组中呈持续性下调;MAP2在共培养诱导组晚期呈现较高表达;HES1在共培养诱导组早期呈现较高表达,晚期则表达降低,在转染组较非转染组呈下降趋势;ATOH7的表达在各组均无统计学意义。结论:SFRP2可以促进牙髓干细胞的神经向分化,但具体机制有待于进一步实验阐明。
[Abstract]:The optic nerve injury disease caused by various causes is more common in the clinic, in which some of the diseases can cause progressive and irreversible damage of the optic nerve and eventually lead to loss of vision. As the nerve cell is a terminal differentiation cell, the regeneration ability is poor, and the injured retinal nerve is difficult to repair and regenerate, and the present invention has no effective method to cure the optic nerve diseases. in recent year, that method of using stem cell to treat the retinal nerve disease is very promising, and the dental pulp stem cells (DPSCs) are also more accessible to the neural stem cells due to the fact that it is derived from the neural stem cells in the same way as the visual nerve cells, And is expected to be a seed cell for repairing the damaged nerve tissue. In that present study, the Notch and Wnt/ n-cata signal pathway is necessary for the development of the retinal nerve in the vertebrate. As a gene that is widely expressed in multiple species and highly conserved in the evolution process, the Notch gene is mainly involved in the inhibition of cell differentiation. The activation of the Wnt/ P-cata signal extends through the whole process of the development of the retina and the optic nerve, suggesting that it plays an important role in the development of the nerve. The secreted frizzled protein 2 (SFRP2) is a Wnt signaling pathway inhibitor, and is also indirectly involved in a plurality of signal paths other than the Wnt signal, such as a Notch and a BMP signal path, and the like. The SFRP2 can be combined with the metal protease ADAM10 to inhibit the Notch signaling pathway. It has been shown that SFRP2 is highly expressed in the process of neural formation, and we speculate that it is possible to promote the differentiation of DPSCs from the source of neural stem cells to neural-like cells by inhibiting the Notch and Wnt signaling pathways that play an important role in stem cell proliferation. In order to verify the above-mentioned hypothesis, human dental pulp stem cells (h DPSCs) were transfected with the recombinant adenovirus-loaded SFRP2 gene in vitro by means of a variety of cell biology and molecular biology methods. The nerve-to-differentiation of h-DPSCs was induced by the co-culture of RPE cells, and the role of SFRP2 in the differentiation of h-DPSCs into the neural-like cells was determined. Methods: The pulp tissue was separated from the intact third molar, and the primary cultured h-DPSCs were cultured by enzyme-digested composite tissue-block method. The growth curves of the third generation h DPSCs and the MTT method were obtained, and their multi-directional differentiation potential was detected by lipogenesis and osteogenesis. The appropriate number of viral infections (MOI) was selected by flow cytometry and cytotoxicity assay (MTT method). The expression of SFRP2 was detected by using an Ad-SFRP2 of 800 parts/ cell, and the expression of SFRP2 was detected by RT-PCR. The expression of GFAP, Nestin, MAP2, HES1, HCO3-3 and ATOH7 was detected by co-culture of h-DPSCs transfected with Ad-SFRP2 and human RPE cells. Results: The growth and morphology of the third generation h DPSCs cultured in vitro under the inverted microscope were in the center. In the staining of toluidine blue, the growth of the cells was observed, and the lipid and calcium nodules were observed by the staining and osteogenesis induction, the 35-day oil-red O-staining and the 21-day fluorescein-red staining. The growth curve shows that the 4-day cell is in the logarithmic growth phase from the retention period, and the 9-day cell enters the plateau phase. The expression of the green fluorescent protein was observed at 8 h after the transfection of Ad-EGFP, and the expression of the gene of SFRP2 was detected by RT-PCR at 72 h after the transfection of Ad-SFRP2. The results of co-culture and the transfection of Ad-SFRP2 showed that the expression of GFAP was higher than that of the transfected group in the early stage. The expression of 1-3 tubuin was down-regulated in the co-culture induction group and the transfected group; MAP2 showed a high expression in the late stage of the co-culture induction group; the expression of HES1 in the early stage of the co-culture induction group was higher, and the expression of the later stage decreased, and the expression of the non-transfected group in the transfection group was decreased. The expression of ATOH7 was not statistically significant in each group. Conclusion: SFRP2 can promote the differentiation of the nerve of the dental pulp stem cells, but the specific mechanism is to be further clarified.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R782

【相似文献】

相关期刊论文 前10条

1 刘振山;耿传营;刘玉凤;;牙髓干细胞的研究与进展[J];中国组织工程研究与临床康复;2008年34期

2 廖志清;;牙髓干细胞研究进展[J];中山大学研究生学刊(自然科学、医学版);2008年03期

3 张映娟;陈文霞;;牙髓干细胞的可塑性研究[J];国际口腔医学杂志;2009年05期

4 商丽娟;吴岩;;牙髓干细胞在组织工程研究中的应用[J];中国组织工程研究;2013年19期

5 郭红延,吴补领,郭希民,王常勇;大鼠牙髓干细胞的培养和鉴定[J];牙体牙髓牙周病学杂志;2004年05期

6 王亦菁,史俊南,金岩;牙髓干细胞的研究和应用展望[J];牙体牙髓牙周病学杂志;2004年06期

7 张春艳,孙善珍,李纾;牙髓干细胞的研究[J];牙体牙髓牙周病学杂志;2004年07期

8 郭红延,王常勇,吴补领;牙髓干细胞研究进展[J];现代口腔医学杂志;2005年05期

9 贺慧霞,史俊南,金岩,李锋华;牙髓干细胞研究中的哲学思考[J];牙体牙髓牙周病学杂志;2005年11期

10 何飞,谭颖徽,张纲;人牙髓干细胞的体外培养和鉴定[J];华西口腔医学杂志;2005年01期

相关会议论文 前10条

1 李昊妍;梁景平;张秀丽;殷德民;;人牙髓干细胞与β-TCP复合后的体内外实验研究[A];全国第三次牙体牙髓病学临床技术研讨会论文汇编[C];2009年

2 李昊妍;梁景平;张秀丽;殷德民;;人牙髓干细胞与β-TCP复合后的体内外实验研究[A];全国第八次牙体牙髓病学学术会议论文汇编[C];2011年

3 邹朝晖;沈静燕;刘士有;;牙髓干细胞的研究进展及应用(综述)[A];天津市生物医学工程学会2006年学术年会论文摘要集[C];2006年

4 贾谦;吴家媛;倪龙兴;;碱性成纤维细胞生长因子对牙髓干细胞成骨分化的影响[A];全国第八次牙体牙髓病学学术会议论文汇编[C];2011年

5 吕长胜;翟旭;;大鼠牙髓干细胞分化成骨样细胞能力研究[A];中华医学会整形外科学分会第十一次全国会议、中国人民解放军整形外科学专业委员会学术交流会、中国中西医结合学会医学美容专业委员会全国会议论文集[C];2011年

6 陆家瑜;华丽;邹德荣;;乳牙牙髓干细胞体内外诱导成骨的研究[A];中华口腔医学会全科口腔医学专业委员会第一次学术年会会议论文集[C];2009年

7 麻丹丹;高杰;吴补领;;改良组织块酶消化法培养人龋坏牙髓干细胞的实验研究[A];全国第八次牙体牙髓病学学术会议论文汇编[C];2011年

8 吕长胜;翟旭;;大鼠牙髓干细胞分化成骨样细胞能力研究[A];中华医学会整形外科学分会第十一次全国会议、中国人民解放军整形外科学专业委员会学术交流会、中国中西医结合学会医学美容专业委员会全国会议论文集[C];2011年

9 申元源;陈柯;许诺;;人乳牙牙髓干细胞体外诱导向软骨细胞分化的实验研究[A];全国第三次牙体牙髓病学临床技术研讨会论文汇编[C];2009年

10 郑颖;王松灵;;小型猪乳牙牙髓干细胞体外分离培养和鉴定[A];全国第三次牙体牙髓病学临床技术研讨会论文汇编[C];2009年

相关重要报纸文章 前2条

1 记者 张忠霞;用猴子牙髓干细胞能刺激脑细胞生长[N];新华每日电讯;2008年

2 罗刚;牙齿——实现器官再生梦想的先锋[N];健康报;2007年

相关博士学位论文 前10条

1 孙海花;牙周炎症状态对患牙牙髓中牙髓干细胞生物学行为的影响[D];第四军医大学;2015年

2 蒋文凯;牙髓干细胞克隆差异及其应用于神经和平滑肌再生方面的初步研究[D];第四军医大学;2016年

3 朱强;肾上腺髓质素对人牙髓干细胞的调控作用及机制研究[D];第三军医大学;2016年

4 王玉良;GPNMB对体外人牙髓干细胞成牙本质分化的作用研究[D];山东大学;2016年

5 陆群;牙髓干细胞分离培养鉴定和体外诱导分化的研究[D];第四军医大学;2002年

6 于金华;牙髓干细胞形成牙体组织能力及其制备嵌合体牙齿的实验研究[D];第四军医大学;2007年

7 郭红延;大鼠牙髓干细胞培养鉴定及生物学特性研究[D];第四军医大学;2004年

8 贺慧霞;牙髓干细胞分离鉴定及其制备组织工程化牙本质牙髓复合体的实验研究[D];第四军医大学;2005年

9 汪银雄;用牙髓干细胞构建牙齿样结构的实验研究[D];第四军医大学;2009年

10 赵秀;MTA调控人牙髓干细胞分化的分子机制的研究[D];第四军医大学;2010年

相关硕士学位论文 前10条

1 林j钦;Scleraxis对牙髓干细胞多向分化的影响[D];福建医科大学;2015年

2 吴中明;TGF-β_3与牙髓干细胞联合Bio-oss骨粉在动物骨缺损修复中的作用研究[D];石河子大学;2015年

3 贺莹;体外连续培养人牙髓干细胞干性特征改变的相关研究[D];第四军医大学;2015年

4 马逢乐;MS-275对人牙髓干细胞增殖和分化的影响[D];第四军医大学;2015年

5 刘庆娜;低氧对人牙髓干细胞生物学特性的影响[D];南方医科大学;2015年

6 冯桂娟;炎症微环境对牙髓干细胞生物学特性影响[D];南通大学;2014年

7 肖敏;机械压应力刺激对人牙髓干细胞和根尖牙乳头干细胞增殖、分化影响的体外研究[D];第四军医大学;2015年

8 郭皓;脱落乳牙牙髓干细胞聚合体用于牙髓再生的实验研究[D];第四军医大学;2015年

9 铁晓敏;牙髓干细胞对牙髓牙本质复合体再生修复作用的研究[D];新疆医科大学;2016年

10 帕尔哈提·阿布肚热合曼;TGF-β_3与地塞米松联合培养对兔牙髓干细胞成骨分化的影响[D];新疆医科大学;2016年



本文编号:2488008

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/kouq/2488008.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户55b97***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com