数字医学技术在闭合性肝外伤诊治中的应用研究
发布时间:2018-05-03 01:23
本文选题:腹部成像 + 肝外伤 ; 参考:《南方医科大学》2015年硕士论文
【摘要】:研究背景:传统肝脏分段法基于形态解剖学,依据肝脏外观分段,在膈肌表面,镰状韧带将肝脏分为解剖上的左、右两叶,这很不同于功能上的左、右叶或者说左、右半肝。在传统分段法中方叶属于肝右叶,而功能属于左叶的一部分。传统分段方法不显示内部血管和胆管结构,该方法优点是比较直观,但不实用。1957年Couinaud C以Glisson系统在肝内分布为基础提出Couinaud分段法,将肝脏分为左右半肝,五叶和八段,并逐渐在亚洲和欧洲普及。该分段方法以肝裂和门静脉及肝静脉在肝内分布为基础,依据功能解剖学将肝脏分为8个独立段。肝右静脉将肝脏分为右前段和右后段,肝中静脉将肝脏分为左半叶和右半叶(或者说左半肝和右半肝)此面从下腔静脉到胆囊窝通过,肝左静脉将肝左叶分为内侧段和外侧段。门静脉将肝脏分为上、下段,左、右门静脉发出上、下分支分别进入每段的中心,尾状叶既是一个叶也是一个段。每个肝段分别用罗马数字Ⅰ-Ⅷ标记,Ⅰ段:尾状叶;Ⅱ段:左外叶上段;Ⅲ段:左外叶下段;Ⅳ段:左内叶(Bismuth分段法第4段又分为4a和4b段);V段:右前叶下段;Ⅵ段:右后叶下段;Ⅶ段:右后叶上段;Ⅷ段:右前叶上段,段的编号依据顺时针进行,Couinaud分段法按顺时针方向将各段编号,其优点是每段都是一个独立单位,切除任何一段而不会影响其他。为保证肝脏存活,切除时必须沿着这些分段周围的血管进行,即切除线平行于肝静脉,这样位于中心位置的门静脉、胆管和肝动脉得以保留。该分段方法实用性强,每个肝段有独立的流入和流出血管以及胆管系统。在每一段的中心有门静脉、肝动脉及胆管分支,每一段的外围有通过流出的肝静脉,对于CT影像诊断,外科手术,有着比较实用的意义和广泛应用。Bismuth分段法类似于Couinaud分段法,两者之间差异很小,在北美地区较为流行。Bismuth分段法三条肝静脉将肝脏分为四个扇形,然后继续分段。这些扇形区以门静脉为界,每个区由一支门静脉供给。区域之间的分隔通常是肝静脉。肝静脉和门静脉相互交织,如同两只手的手指。左侧门静脉将肝脏分为两个扇形区:前部分和后部分,左前扇区有两个段:4段(肝方叶)和3段(左叶解剖的前部分)。这两段由左肝裂或脐裂分隔,左侧后扇区仅有一个2段,位于左叶的后方。Couinaud分段法中极少注意常见的解剖变异,尤其是右半肝。近年来的文献报道证明肝内管道的变异使Couinaud分段法不能真实反映肝脏内部解剖结构,导致影像学定位错误和影响肝脏手术方案的制定、实施。传统分段方法是对尸体肝脏标本的灌注铸型后进行研究,所获得的解剖信息有限,临床医师很难在头脑中形成一个立体、空间的印象。解剖的不清楚,导致了手术的复杂化、决策困难化、风险扩大化。CT,MRI等二维影像技术的应用改变了一维平片图像的重叠等缺点,但是在图像的连续性、动态显示方面仍然没有得到令人满意的解决。随着多层螺旋CT采集技术的发展及中国数字化虚拟人数据集的建立,国内外各种3D医疗软件相继产生,三维重建可以重现人体骨骼,血管,内脏,肿瘤的解剖位置,可以空间动态观察。然而,大多数的国外三维医疗软件费用昂贵,不能对感兴趣区域进行任意的颜色标注、透明化、放大、缩小,不能任意角度进行观察,并且不具有模拟手术器械,不能模拟三维手术,限制了其广泛应用。在国家高技术研究发展计划(863计划)项目;国家自然科学基金;广东省自然科学团队项目;广东省教育部产学研结合项目;广东省中国科学院全面战略合作项目等科研项目支持下,我们通过自主研发的3D医学图像可视化系统(Medical Image Three Dimensional Visualization System,MI-3DVS系统),基于64层以上螺旋CT提供亚毫米级的影像信息数据,进行100例活人体正常肝脏的薄层CT图像数据的快速、准确的个体化三维重建,根据肝内门静脉和肝静脉变异及其分布,个体化肝脏分段、分类,并行术前虚拟软件平台仿真切肝,测定残余肝脏体积,该研究使得对肝脏脉管系统变异、肝脏组织精准可切除性评估成为可能,不仅改进了传统疾病的传统诊断方式,使更多正常肝组织得以保留,还减少了术中出血、保存了更多的肝脏实质,降低切肝术后的并发症的发生率和患者死亡率。术者可以在术前选择最佳的手术方案,指导实际手术操作,实现了真正的数字化肝脏外科。同时基于17例腹部闭合性肝外伤患者的重建数据阐述MI-3DVS系统为核心的数字医学技术在腹部闭合性肝外伤诊治中的优势。第一部分 数字化肝脏分段导向下的个体化肝脏三维重建目的:1.研究MI-3DVS系统重建个体化肝脏的成像特点;2.研究100例活人体正常肝脏中肝门静脉的正常和变异表现;3.研究上述100例活人体正常肝脏中肝静脉的正常和变异表现,依据变异的肝静脉对肝脏个体化分段;4.探讨数字化肝脏分段的意义。方法:1.研究对象及材料:(1)选取2013年1月1日至2015年1月1日期间,于我院行上腹部CT扫描体检的100名健康志愿者64排CT腹部平扫+增强扫描,男性63人,女性37人,平均25岁(所有志愿者均签订知情同意书,经南方医科大学伦理委员会批准,符合医疗护理操作常规)。肝功能正常,肝脏无器质性病变。排除标准:1.肝动脉、门静脉、肝静脉及下腔静脉狭窄或闭塞者;2.门静脉、肝静脉、下腔静脉显影不良者;3.有X线检查禁忌症、对造影剂过敏者。(2)CT数据收集及研究设备、影像学扫描参数、药品、数据采集方法、图像三维重建方法参考(方驰华,周五一,虞春堂,等.肝脏管道系统灌注后薄层CT扫描和三维重建的研究[J].中华外科杂志,2004,42(9):562-564.)。2.观测肝门静脉分支及变异类型,观察肝静脉分支及变异类型。3.个体化分段方法参照方驰华等发表过文献介绍的立体选框法,当门静脉为正常型时,我们根据肝静脉分型变异进行肝脏个体化分段,当肝静脉为正常型时,我们根据门静脉分型变异进行个体化分段,分段的命名按顺时针方向依次命名,对于本课题未发现的门静脉变异类型及肝静脉变异类型,或者门静脉及肝静脉均发生变异的数据,本次研究不做为个体化分型对象。4.统计学方法:本研究主要为形态学描述,基本不涉及统计学推断。结果:1.数字化门静脉显示效果统计:门静脉三维重建模型结构清晰、逼真、立体感强。肝门静脉显示率为100%,按照Couinaud门静脉0-2级分支的方法,对100例健康自愿者门静脉模型划分为以下类型:正常型:门脉主干在肝门处分为左支和右支,右支向右侧走行,分为右前支和右后支,82例,占82%;Ⅰ型变异:门脉主干在肝门处呈三叉状,直接分为左支、右前支和右后支,14例,占14%。Ⅱ型变异:门静脉右前支与门静脉左支共干型,4例,占4%。未发现有关文献报道的门静脉右支缺如型及门静脉左支水平段缺如型变异。2.数字化肝静脉显示效果统计:肝静脉重建模型清晰、逼真、立体感强,肝左、中、右静脉显示率为100%。肝静脉的分型方法参照方驰华等前期的研究成果得出100健康自愿者肝静脉总体分型如下:A型(左、中、右三支肝静脉分别单独汇入下腔静脉):41.0%(41/100),B型(肝左静脉(LHV)和肝中静脉(MHV)合成短干后再汇入下腔静脉):59.0%(59/100),C型(肝右静脉(RHV)和肝中静脉合成短干后再汇入下腔静脉)在本次研究中未发现。肝右静脉分型:A型(此型最常见,是一个主干和若干小分支):78.0%(78/100),B型(肝右静脉为一短干,伴有粗大的肝中静脉起代偿作用):14.0%(14/100),C型(细小的肝右静脉伴有一较粗大的直接汇入下腔静脉的右后下静脉(IRHV)):4.0%(4/100),D型(细小的肝右静脉伴有一支细小的直接注入下腔静脉的副肝右静脉(ARHV)):4.0%(4/100)。肝右静脉亚型:主要观察肝右静脉是否在根部即开始分支及分支的数目:Ⅰ型34.0%(34/100):肝右静脉在早期及根部无大的分支,仅有一个主干注入下腔静脉,Ⅱ型56.0%(56/100):肝右静脉为一个主干,并在早期分成两个粗细差异不大属支,Ⅲ型6.0%(6/100):肝右静脉在下腔静脉根部分成两个粗细差异不大属支,Ⅳ型8.0%(8/100):肝右静脉在下腔静脉根部分成两个粗细差异不大属支,其中一个属支再分成两个粗细差异不大分支。肝中静脉分型:A型78.0%(78/100):此型最常见,肝中静脉仅有一个主干和若干小分支;B型20.0%(20/100):出现汇入肝中静脉的Ⅳ段静脉(Sg4V);C型:Ⅳ段静脉和脐静脉同时汇入肝中静脉(C型在本次研究中未发现);D型12.0%(12/100):出现直接汇入下腔静脉的Ⅳ段静脉。肝左静脉分型:A型82.0%(82/100):此型最常见,为肝左静脉仅有一个主干和若干小分支;B型18.0%(18/100):出现汇入肝左静脉的4段静脉;C型:同时出现汇入肝左静脉的Ⅳ段静脉和脐静脉(C型在本次研究中未发现)。3.数字化个体化肝脏分段统计门静脉正常型肝脏个体化分为8段与Couinaud分段法相同,Ⅰ型变异肝脏个体化分为7段,Ⅱ型变异肝脏个体化分为9段。肝静脉正常型肝脏个体化分为8段与Couinand分段法相同,拥有4段肝静脉的肝脏个体化分9段,拥有8段肝静脉的肝脏个体化分9段,同时拥有4段及8段肝静脉的肝脏个体化分10段,拥有右后下静脉的肝脏个体化分9段。结论:1.基于64排螺旋CT肝静脉增强扫描的数据集,使用MI-3DVS进行数字化三维重建速度快、效果好,肝门静脉、肝静脉模型清晰、逼真、立体感强、可根据需要进行随意旋转、透明化等操作;在个体化肝脏分段、手术风险评估、手术方式的选择以及在临床教学等方面都有很大的应用价值。2.3D模型来源于活人体的图像数据,真实再现了肝脏、肝内血管在体时的原始解剖位置关系,真正实现了活人体解剖数字化;第二部分 三维重建技术在腹部闭合性肝外伤诊治中的应用目的:1.利用MI-3DVS系统重建17例腹部闭合性肝外伤患者,观察腹部闭合性肝外伤三维成像特点;2.将三维重建证明可以保守的患者进行保守治疗观察疗效;3.需要手术患者,将术中情况与术前三维重建对照,证明MI-3DVS系统可以明确外伤部位、血肿范围、血管损伤情况,可以在术前帮助医师决定手术方式、术式大小,在肝外伤诊治方面体现三维重建的优越性。方法:1.研究对象及材料:(1)收集我数字医学中心2009年1月至2015年1月共17例(14名男性,3名女性;平均年龄,29岁)腹部闭合性肝外伤患者肝脏64排螺旋CT扫描数据(所有志愿者均签订知情同意书,经南方医科大学伦理委员会批准,符合医疗护理操作常规)。(2)电脑系统及软件配置同第一章。2.影像学扫描参数、数据采集、药品、图像三维重建方法同第一章。3.观测肝脏内部主要血管肝动脉、肝静脉、门静脉损伤情况的相关数据。4.统计学方法:本实验主要为形态学描述,基本不涉及统计学推断。结果:1.17例患者均为腹部闭合性肝外伤患者。14例患者术前三维重建模型表现出明显的肝内血管损伤,需要相应的手术治疗,术中发现情况与术前三维重建情况相对应。3例术前三维重建模型没有显示肝内血管损伤,患者成功的保守治疗。全部17名患者痊愈出院。结论:1.腹部医学图像可视化系统(MI-3DVS)能快速有效的完成肝脏64排螺旋CT的三维数据的程序分割、三维重建,所完成的三维图像能很好的反映肝脏的损伤情况,它使术者在术前对肝脏破裂有一个更全面的认识和诊断,使手术更加精确,使患者得到及时准确的救治,腹部医学图像系统在肝外伤诊治中有良好的应用前途。
[Abstract]:Background: the traditional liver segmentation method is based on morphologic anatomy based on the segmented liver appearance. On the surface of the diaphragm, the liver is divided into the left and right two leaves of the liver. This is different from the functional left, right or left, right Hemiliver. In the traditional segmentation method, the Chinese leaf belongs to the right lobe of the liver, and the function belongs to a part of the left lobe. Traditional division is a traditional part. The method does not show the internal vascular and bile duct structure. The advantage of this method is more intuitive, but it is not practical.1957 year Couinaud C based on the Glisson system in the liver distribution based on the Couinaud segmentation method, the liver is divided into left and right liver, five leaves and eight segments, and gradually in Asia and Europe. The segmental method is hepatic fissure and portal vein and hepatic vein. The liver is divided into 8 independent segments based on the functional anatomy. The right hepatic vein divides the liver into the right anterior and right posterior segments. The hepatic vein divides the liver into the left and right half (or left half liver and right hemi liver) from the inferior vena cava to the gallbladder fossa, and the left lobe of the liver is divided into the medial and lateral segments of the liver. The vein divides the liver into the upper, lower, left and right portal veins on the upper and lower branches into the center of each segment. The caudate leaves are both a leaf and a segment. Each segment of the liver is marked with Rome digital I - VIII, the first segment: the caudate leaf; the second segment: the upper left lateral lobe; the third segment: the left outer segment; the IV segment: fourth segment of Bismuth segment method (fourth segment method segment method (segment method). It is divided into 4A and 4B segment); V segment: right anterior inferior segment; section VI: right posterior inferior segment; Section VII: right posterior upper lobe; Section VIII: right anterior lobe, upper segment of right anterior lobe, serial number according clockwise. The Couinaud section is numbered according to clockwise direction. The advantage is that each segment is a independent unit, excise any segment without affecting the others. To ensure the survival of the liver, it is necessary to follow the vessels around these segments, that is, the excision line is parallel to the hepatic vein, so that the portal vein, the bile duct and the hepatic artery in the central position are retained. The segmental method is practical, each segment has an independent inflow and flow bleeding tube and the bile duct system. There is a portal vein at the center of each segment. The hepatic artery and the branch of the bile duct, with the outflow of the hepatic vein on the periphery of each segment, for CT imaging diagnosis and surgery, there are more practical significance and extensive application of the.Bismuth segmentation method similar to the Couinaud segmentation method. The difference between the two is very small. In North America, the three hepatic veins are divided into four branches of the liver, which is more popular in the North American area. These sector areas are bounded by the portal vein, each of which is supplied by a portal vein. The division of the region is usually the hepatic vein. The hepatic vein and the portal vein intertwined, like the fingers of two hands. The left portal vein divides the liver into two sectors: the anterior and posterior parts, and the left anterior sector with two segments: the 4 segment (liver Square). The 3 segments (the anterior part of the left leaf anatomy). These two segments are separated by left hepatic or umbilical cleft, only a 2 segment in the left posterior section of the left lobe. There is little attention to common anatomical variations in the left posterior.Couinaud section, especially in the right Hemiliver. In recent years, the literature has shown that the variation of the intrahepatic duct can not reflect the liver by the Couinaud segmentation method. The internal anatomical structure leads to the error of imaging localization and the formulation and implementation of the liver surgery program. The traditional segmentation method is to study the perfusion cast of the cadaver liver specimens. The anatomical information obtained is limited. The clinician is difficult to form a three-dimensional, spatial impression in the brain. The dissection is not clear, which leads to the recovery of the operation. The application of two-dimensional image technology, such as hybrid, difficult decision, risk enlargement,.CT, MRI, has changed the shortcomings of one dimension flat image, but it still has not been satisfactorily solved in the continuity and dynamic display of the image. With the development of multi-slice spiral CT acquisition technology and the establishment of digital virtual human data set in China, The internal and external 3D medical software has been produced in succession. The three-dimensional reconstruction can reproduce the human skeleton, blood vessels, viscera, and the anatomical position of the tumor. However, most of the foreign 3D medical software is expensive, and can not make any color mark on the region of interest, transparent, magnified, and narrow, and can not be observed at any angle. And do not have analog surgical instruments, can not simulate three-dimensional surgery, limited its wide application. In the national high-tech research and development plan (863 plan) project; National Natural Science Foundation; Guangdong province natural science team project; the Guangdong Ministry of Education Ministry of education, research and research projects; the comprehensive strategic cooperation project of the Chinese Academy of Sciences, Guangdong Province, etc. Under the support of the scientific research project, we use the independent 3D medical image visualization system (Medical Image Three Dimensional Visualization System, MI-3DVS system) to provide sub millimeter level image information data based on 64 layers of spiral CT, and carry out the rapid and accurate individualization of the thin layer CT image data of 100 cases of normal human normal liver. Reconstruction, according to the variation and distribution of the intrahepatic portal vein and the hepatic vein and its distribution, the individual liver segmentation, classification, and the parallel operation of the pre operation virtual software platform to simulate the liver cutting and determine the residual liver volume. This study makes the variation of the liver pulse tube system and the accurate resectability evaluation of the liver tissue as possible, not only improves the traditional diagnosis of traditional diseases. To preserve more normal liver tissue, reduce intraoperative bleeding, preserve more liver parenchyma, reduce the incidence of complications after hepatectomy and the patient's mortality. The operator can select the best surgical procedure before the operation, guide the actual operation and realize the true digital liver surgery. At the same time, 17 cases of abdominal closure are closed. The reconstruction data of the patients with liver injury describes the advantages of the MI-3DVS system as the core of digital medical technology in the diagnosis and treatment of closed abdominal trauma. Part 1 Digital liver segmented oriented individualized liver reconstruction: 1. study the imaging characteristics of the MI-3DVS system for the reconstruction of individual liver; and 2. study 100 cases of normal human normal human body. The normal and variant manifestations of the hepatic portal vein in the liver; 3. to study the normal and variant manifestations of the hepatic veins in the normal liver of the 100 living cases, according to the variation of the hepatic vein to the individual segment of the liver; 4. to explore the significance of the digital liver segmentation. Methods: 1. research objects and materials: (1) select the period from January 1, 2013 to January 1, 2015. 100 healthy volunteers in the upper abdomen of our hospital had 64 rows of CT abdominal plain scan + enhanced scan, 63 men and 37 women, with an average of 25 years old (all volunteers signed informed consent, approved by the Southern Medical University ethics committee, consistent with the regular medical care operation). The liver function was normal and the liver had no organic lesions. Exclusion criteria. 1. hepatic artery, portal vein, hepatic vein and inferior vena cava stenosis or occlusion; 2. portal vein, hepatic vein, inferior vena cava dysplasia; 3. X - ray contraindication, contrast agent allergy. (2) CT data collection and research equipment, imaging scanning parameters, medicine, data acquisition method, image 3D reconstruction method reference (Fang Chihua, Friday, Friday reference) One, Yu Chuntang, et al. A study of thin layer CT scan and three-dimensional reconstruction after hepatic duct system perfusion [J]. Chinese surgery magazine, 2004,42 (9):562-564.).2. observation of hepatic portal vein branch and variation type, observation of hepatic vein branch and variant type.3. individualized segmenting method referring to Fang Chi Hua et al. When the vein is normal, we subsection the liver according to the variant of the hepatic vein. When the hepatic vein is the normal type, we make individualized segmentation according to the variation of the portal vein. The nomenclature is named according to the clockwise direction. The type of portal vein variation and the variant type of the hepatic vein, or the portal vein, are not found in this subject. And the data of the variation of the hepatic vein, this study was not used as an individual.4. statistical method: This study was mainly a morphological description, basically without statistical inference. Results: 1. the results of digital portal vein display: the structure of the portal vein three-dimensional reconstruction model is clear, realistic and strong. The display rate of the hepatic portal vein is 100%, according to the method of the 0-2 branch of Couinaud portal vein, the portal vein model of 100 healthy volunteers was divided into the following types: normal type: the portal trunk was divided into the left and right branches at the hepatic portal, the right branch went to the right side, and the right branch was divided into right anterior and right posterior branches, 82 cases, 82%, and type I variation: the portal trunk was three forked at the hilum and directly divided. For the left, right anterior and right posterior branches, 14 cases accounted for 14%. type II variation: the right anterior branch of the portal vein and the left branch of the portal vein were co dried in 4 cases, accounting for the absence of the relevant documents reported on the deficiency of the right branch of the portal vein and the deficiency of the left level of the portal vein of the portal vein in the.2. digital hepatic vein, which showed a clear, realistic and stereoscopic model of the hepatic vein reconstruction model. Strong, left, middle, and right veins of the liver were displayed as the 100%. hepatic vein classification method referring to the previous research results of Fang Chihua and other prophase studies. The total hepatic vein classification of 100 healthy volunteers was obtained as follows: A (left, middle, right three branches of the hepatic vein respectively rejoining the inferior vena cava):41.0% (41/100), B type (LHV) and the middle hepatic vein (MHV) synthesis after the short dry after the short dry. :59.0% (59/100), type C (right hepatic vein (RHV) and hepatic vein synthesis after short dry vein to inferior vena cava) in this study was not found. The right hepatic vein classification: A (the most common type is a trunk and a number of small branches):78.0% (78/100), B (the right hepatic vein is a short dry, accompanied by a coarse hepatic vein compensatory). :14.0% (14/100), type C (small right hepatic vein with a larger right posterior inferior vena vein (IRHV) directly into the inferior vena cava): 4% (4/100), D (the right vein of the liver is accompanied by a tiny direct injection of the right vein of the inferior vena cava (ARHV)):4.0% (4/100). The right vein of the liver is subtype: the main observation is whether the right hepatic vein is in the right vein. The number of starting branches and branches: type I 34% (34/100): there is no large branch of the right vein in the early and root parts of the liver, only one trunk is injected into the inferior vena cava, type II 56% (56/100): the right hepatic vein is a trunk, and in the early stage, the difference of the two coarse and fine branches is not a branch, and type III 6% (6/100): the right hepatic vein is in the inferior vena cava. The difference of two coarse and fine differences is not a branch, and type IV 8% (8/100): the right hepatic vein is divided into two coarse and fine branches in the root of the inferior vena cava, one of which is divided into two coarse and fine different branches. The middle hepatic vein type is A type 78% (78/100): this type is the most common, the middle hepatic vein is only one trunk and a number of small branches; type B 20 .0% (20/100): the vein IV vein (Sg4V) into the middle hepatic vein (Sg4V); C type IV and the umbilical vein to the middle hepatic vein (type C is not found in this study); D 12% (12/100): the IV vein of the inferior vena cava, the hepatic left vein type: A type 82% (82/100): this type is the most common, only the left hepatic vein of the liver. One trunk and a number of small branches; type B 18% (18/100): the 4 vein of the hepatic left vein; C type: the IV and the umbilical veins of the left vein of the liver (type C not found in this study) the.3. digitized individual hepatic segmental portal normal liver was divided into 8 segments, which were the same as that of the Couinaud subsection. The individual variant liver of type I was divided into 7 segments, and the individualization of type II variant liver was divided into 9 segments. The normal liver of the hepatic vein was divided into 8 segments, which were the same as that of the Couinand segment. There were 9 segments of the liver with 4 segments of the hepatic vein, 9 segments of the liver with 8 segments of the hepatic vein, and 10 segments of the liver of 4 and 8 segments of the liver. There are 9 segments of the liver in the right posterior inferior vein. Conclusion: 1. based on the data set of the 64 row spiral CT liver vein enhancement scan, the digital 3D reconstruction is fast and effective using MI-3DVS. The hepatic portal vein, the hepatic vein model is clear, realistic and strong, and can be rotated freely and transparently according to the need. The.2.3D model is derived from live surgery.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R657.3
【参考文献】
相关期刊论文 前1条
1 彭丰平;鲍苏苏;;CT序列图像中肝脏及其管道的分割[J];计算机工程与应用;2009年20期
,本文编号:1836359
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/1836359.html
最近更新
教材专著