交流磁流体血泵的初步研究
[Abstract]:Objective: Heart failure (HF), as the end-stage of various cardiovascular diseases, is increasing year by year and the patients are younger. As an effective way to treat HF, the research and development of artificial heart is a hotspot of scientists all over the world, which can be roughly divided into total artificial heart and ventricular assist device. Two kinds of ventricular assist devices are introduced in this paper. The core component of the artificial blood pump is mechanical components, which inevitably leads to hemolysis, thrombosis and poor tissue compatibility. Lorentz force is used instead of mechanical force to promote blood flow. There is no contact between mechanical parts and blood. It is hopeful that the problems of poor histocompatibility, hemolysis and thrombosis of several generations of artificial blood pumps can not replace the heart permanently. Methods: The base of ACMHD artificial blood pump developed by the Institute of Electrical Engineering, Chinese Academy of Sciences was studied. On the basis of this blood pump to optimize the hemodynamic chamber and motor conversion frequency (center field strength 0.9T, motor alternating frequency 0-80hz), and further in-depth study. Conductivity, the height of NaCl solution in power room and power room H. Measure and record the number of cycles of tracer particles in each working condition and the conductivity and temperature of NaCl solution before and after experiment. Observe the flow of NaCl solution in power room. According to the collected data, the best working condition of blood pump is obtained. On the basis of the previous performance test, the sheep blood was placed in the AC MHD blood pump power room, and the frequency of magnetic field change (i.e. the speed of three-phase asynchronous motor) was adjusted at room temperature (25 C), and the height of blood level H was transfused through the blood flow. The blood samples were divided into two groups: the control group (without external magnetic field) and the exposed group (with alternating magnetic field exposure for 3 hours, h=87mm). Result: Blood pump salt water performance test experiment: 1. Because the axial path of induction current is too low, the circular hemodynamic chamber (H = 20mm, H = 40mm) which was originally conceived to approximate the diameter of aorta was designed, regardless of changing the conductivity of conductive liquid or increasing the frequency of change of the applied motor. The flow rate of the conductive liquid is proportional to the variation frequency of the applied motor and the conductivity of the conductive liquid. The relationship between the conductive liquid and the height of the blood chamber is quadratic. In vitro sheep blood pump related test: 1. Sheep blood in the alternating magnetic fluid pump (motor frequency 70 hz, longitudinal height H = 100 mm annular channel) can achieve continuous flow, its flow rate is 2 mm / s, flow rate is 1.44 ml / h. Compared with the control group, the number of platelets decreased (P = 0.000 (27) 0.5). 3, sheep blood flowed at alternating frequency 70 Hz and annular channel height H = 100 mm. Whole blood high shear viscosity decreased (p = 0.006 (27) 0.05); whole blood low shear viscosity decreased, P = 0.000 (27) 0.001, with significant statistical significance. The cytoplasm of blood cells (mainly red blood cells) was obviously shallower than that of the control group, and there was a cluster of black particles in the cytoplasm. In dew group, 4?0.15, the typical double-concave disc structure (indicated by red arrow) disappeared after exposure to alternating magnetic field in control group. Conclusion: 1. The experiment proves that the development of alternating magnetic fluid blood pump is feasible, and the continuous flow of blood flow can be realized completely; 2. The experiment proves that the optimal frequency of magnetic field change is 70 hz. Under this condition, the energy conversion of blood pump is the greatest, and the influence on blood is the smallest. 3. Experiments prove that blood as a complex non-Newtonian fluid has no obvious damage to blood cells after the operation of alternating magnetic fluid blood pump. 4. Experiments prove that the blood viscosity of isolated blood after alternating magnetic fluid blood pump operation is the same as that of other magnetism. The change of viscosity of sheep blood was not obvious because of the particularity of alternating magnetic field. 5. It was found that the structure and internal substances of sheep blood cells (mainly red blood cells) were changed after acute exposure to alternating magnetic fluid (AMF), and whether it would affect the blood. The function of liquid cells will advance the direction of experimental evaluation for us.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R654.2
【相似文献】
相关期刊论文 前10条
1 杜松林;肖学钧;;流场测试技术及其在血泵流场测试中的应用[J];北京生物医学工程;2007年03期
2 谷凯云;高斌;常宇;;基于心率的主动脉血泵流量控制[J];中国组织工程研究与临床康复;2011年13期
3 钱坤喜,王惠荪;小型左心室辅助血泵的研制[J];中国生物医学工程学报;1987年02期
4 蔺嫦燕,孙衍庆,董培青,魏文宁,王建华,王秀敏;微型血泵的研制及其模拟实验研究[J];中国生物医学工程学报;1997年01期
5 肖佐;新型人造血泵即将面世[J];知识就是力量;1999年10期
6 钱坤喜,万福凯,曾培,茹伟民,袁海宇;永磁磁浮叶轮在血泵内的偏心距测量及分析[J];江苏大学学报(自然科学版);2004年01期
7 俞晓青,丁文祥,王伟,陈恩,蒋祖明,邹文艳;磁偶合驱动轴流式血泵的可行性研究[J];生物医学工程学杂志;2004年01期
8 徐先懂;谭建平;;血泵驱动电机调速系统研究[J];机电工程技术;2006年10期
9 徐先懂;谭建平;龚中良;;基于心室功的血泵控制算法研究[J];生物医学工程学杂志;2007年05期
10 徐先懂;谭建平;;血泵驱动电机的生理控制策略研究[J];生物医学工程与临床;2007年06期
相关会议论文 前4条
1 刘世昌;;进出口导轮叶片数对血泵流动性能影响的模拟分析[A];中国金属学会冶金设备分会2012年全国冶金设备液压润滑气动技术交流会会刊[C];2012年
2 吴广辉;蔺嫦燕;李冰一;王景;;CFD技术在血泵设计中的应用[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(下册)[C];2007年
3 常宇;刘有军;乔爱科;南群;;心衰血流动力学研究与主动脉血泵研究进展[A];第十届全国生物力学学术会议暨第十二届全国生物流变学学术会议论文摘要汇编[C];2012年
4 陈普兴;;知行保健法[A];陕西老年学通讯·2013年第2期(总第94期)[C];2013年
相关重要报纸文章 前2条
1 记者 陈飞;终末期心衰治疗用血泵研制获突破[N];健康报;2013年
2 记者 陈立;植入航天 心绵羊创存活记录[N];中国航天报;2013年
相关博士学位论文 前4条
1 刘云龙;大间隙永磁轴流式血泵速度控制研究[D];中南大学;2013年
2 徐先懂;轴流式血泵外磁场驱动及其控制系统研究[D];中南大学;2006年
3 龚中良;微型植入式血泵血液自润滑机理研究[D];中南大学;2006年
4 张岩;一、一种新型轴流泵式心脏辅助血泵的研制和体外性能实验 二、外轴承血泵方案(整体转子方案)的提出[D];中国协和医科大学;2007年
相关硕士学位论文 前10条
1 陶鹏先;交流磁流体血泵的初步研究[D];兰州大学;2017年
2 何林峰;人工心脏的数值仿真与设计优化[D];西南交通大学;2015年
3 张帆;离心式磁悬浮血泵的流体仿真与实验研究[D];哈尔滨理工大学;2016年
4 胡维岩;基于自主开发的血泵样机性能分析[D];浙江大学;2013年
5 杨剑;电磁血泵的研制及体外模拟实验[D];第四军医大学;2001年
6 刘世昌;结构参数对锥形螺旋血泵性能影响的研究[D];燕山大学;2012年
7 范灏;具有周向分布楔形间隙结构的液力悬浮血泵设计与研究[D];浙江大学;2014年
8 张雷;多用途双心室体外辅助循环血泵的实验研究分析[D];暨南大学;2014年
9 刘志坚;大间隙磁力驱动血泵动力学特性研究[D];中南大学;2010年
10 祝忠彦;血泵大间隙磁力传动系统磁力矩相位角及电磁体温升研究[D];中南大学;2011年
,本文编号:2195652
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2195652.html