鞘内吗啡预处理通过调控心肌缺血后脊髓神经元兴奋性发挥心肌保护作用的机制研究
[Abstract]:BACKGROUND & OBJECTIVE Ischemic heart disease is one of the most lethal and disabled diseases in China at present. Although timely recovery of ischemic myocardial perfusion is an important means of treatment, more than half of the final myocardial infarction area after myocardial ischemia is caused by ischemia reperfusion injury (IRI). Bradykinin, adenosine and hydrogen ions produced in the local microenvironment during reperfusion excite myocardial ischemia-sensitive afferent neurons and upload nociceptive signals via dorsal root ganglia (DRG) and corresponding segments of the spinal cord to the higher central nervous system. Gelatinosa, SG, is the primary portal of nociceptive information to the central nervous system. It is mainly composed of excitatory intermediate neurons. It plays an important role in regulating the input and integration of nociceptive stimulus information. Myocardial ischemia induces excitation of spinal neurons in corresponding segments, and then releases neurotransmitters through sympathetic reflex to aggravate myocardial injury. Previous studies have shown that intrathecal morphine preconditioning (ITMP) can significantly reduce myocardial ischemic injury. However, ITMP plays a protective role in the distal heart. Methods SD male rats, weighing 180-280 g, were successfully established intrathecal catheterization model. This study was divided into two series. Part I: To investigate the neural regulation mechanism of ITMP on the excitability of spinal SG neurons after myocardial ischemia in rats. Six groups (n=6), sham operation group (SHAM group), ischemia-reperfusion group (IR group), intrathecal morphine preconditioning group (ITMP group), delta receptor blocker NTD+ITMP group (NTD+ITMP group), kappa receptor blocker nor-BNI+ITMP group (nor-BNI+ITMP group) and mu receptor blocker CTOP+ITMP group (CTOP+ITMP group). All groups except SHAM group were ligated with 30 mi left anterior descending coronary artery ischemia. The model of myocardial ischemia-reperfusion injury was established by reperfusion for 120 minutes.Morphine was injected intrathecally 30 minutes before myocardial ischemia in ITMP group for 5 minutes and stopped for 5 minutes.The same volume of saline was given to I/R group.NTD+ITMP group,nor-BNI+ITMP group and CTOP+ITMP group were injected intrathecally 10 minutes before morphine preconditioning respectively. NTD (1 ug.ul-1,10 ul), nor-BNI (1 ug.ul-1,10 ul), CTOP (1 ug.ul-1,10 ul). At the end of 10 minutes of reperfusion, the T2-T6 spinal cord of rats was separated and the spinal cord tissue sections were prepared. The action potential (AP) of SG neurons, including resting potential (R-P) of SG neurons, were recorded by whole-cell patch clamp technique. P, threshold of action potential (APT), peak of action potential (APP), action potential duration (expressed as APD50), and the number of action potentials evoked by step current 40, 60, 80, 100 P A were recorded. Part II: To study the effects of ITMP on myocardial ischemia injury and related neurotransmitter release. The incidence of arrhythmia was recorded during the experiment. Rats were sacrificed at 120 minutes after reperfusion. The infarct area (IS) and the area of ischemic risk area (ARR) were measured and the ratio of IS to ARR was calculated. The expression of c-fos protein in spinal cord and DRG tissues of T2-T6 was detected by Western blot. The release levels of substance P (SP), calcitonin gene related peptide (CGRP) and endomorphin 2 (EM-2) and the expression of SP and CGRP in DRG were observed by immunofluorescence. Results Part I: To investigate the excitability of ITMP on SG neurons in spinal dorsal horn after myocardial ischemia in rats. The results showed that the excitability of SG neurons in spinal dorsal horn was enhanced after myocardial ischemia, which was manifested by the decrease of APT, the increase of APP and the increase of the number of AP induced by synchronous current stimulation, while ITMP significantly reversed the increase of excitability of SG neurons in IR group, which was manifested by the increase of APT, the decrease of APP and the induction of synchronous current stimulation. There was no significant difference in RP and APD50 of SG neurons in the spinal dorsal horn of each group. Compared with ITMP group, the decreased excitability of SG neurons could be cancelled by pretreatment with delta, kappa, and mu opioid receptor blockers respectively. The decrease of APT, the increase of APP and the increase of AP induced by synchronous stimuli were observed. Effects of ITMP on myocardial ischemia injury and related neurotransmitter release 1. ITMP-mediated myocardial protective effect: ITMP can significantly reduce myocardial infarction volume and arrhythmia incidence, and NTD, nor-BNI and CTOP completely block the myocardial protective effect of ITMP. 2. ITMP on the expression of SP, CGRP and EM-2 in spinal cord after myocardial ischemia in rats Immunofluorescence showed that SP, CGRP and EM-2 immunoreactive products co-expressed in the superficial layer of the spinal dorsal horn. After myocardial ischemia, SP and CGRP were overexpressed in the spinal dorsal horn. ITMP could significantly inhibit the up-regulation of SP and CGRP expression in the spinal dorsal horn after myocardial ischemia. EM-2 expression in the spinal dorsal horn after myocardial ischemia did not change significantly, but ITMP could significantly up-regulate the Regulation of EM-2 expression after myocardial ischemia. 3. Effect of ITMP on SP and CGRP expression in DRG after myocardial ischemia in rats: Immunofluorescence results showed that SP and CGRP expression in DRG increased significantly after myocardial ischemia. ITMP could significantly reduce the expression of SP and CGRP in DRG induced by myocardial ischemia-reperfusion injury. Effects of three central opioid receptor blockers on the expression of c-fos in dorsal horn and DRG: Western blot showed that the expression of c-fos in spinal dorsal horn and DRG increased significantly after myocardial ischemia in rats. ITMP significantly inhibited the expression of c-fos in spinal dorsal horn and DRG after myocardial ischemia in rats. Postoperative neuroprotective effects of ITMP on myocardial ischemia are related to decreasing excitability of spinal SG neurons, reducing cardiac nociceptive response, and regulating nociceptive signals at spinal cord level. Three central opioid receptors, delta, kappa and mu, are involved in this protective effect. 2. The protective effect is related to inhibiting the excessive release of neurotransmitters such as SP and CGRP in the spinal cord after myocardial ischemia, promoting the release of EM-2 at the spinal cord level and reducing the excitability of neurons.
【学位授予单位】:安徽医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R614
【相似文献】
相关期刊论文 前10条
1 曲锋 ,邱学才;皮质类固醇激素对神经元兴奋性有调控作用[J];生理科学进展;1992年04期
2 涂明义,李朝武,张苏明,聂海岭,马燕妮,成勇,毛高峰,方煌,张瑾;纳洛酮对大鼠额叶皮层神经元兴奋性的影响[J];中华神经科杂志;2004年06期
3 刘之红;刘之英;;35例癫痫患者的康复指导[J];中国实用医药;2012年07期
4 尚伟,谢安木,曹丽丽,赵秀鹤;热休克蛋白与神经元兴奋性损伤[J];国外医学(生理、病理科学与临床分册);1997年04期
5 郑琴;;大鼠骨癌痛模型中小直径背根神经节神经元兴奋性增强[J];中国疼痛医学杂志;2012年09期
6 尤春景;用F波评价节段运动神经元兴奋性[J];国外医学(物理医学与康复学分册);1993年01期
7 唐红梅;董军;陆大祥;戚仁斌;;MCP-1通过影响钾通道的开放进而影响神经元兴奋性突触后电流[J];中国病理生理杂志;2010年10期
8 董惠;王小新;吴力娟;段伟松;许蕾;;突变TDP43诱导神经元兴奋性升高以及双甲氧姜黄素的神经保护作用[J];脑与神经疾病杂志;2013年06期
9 王得文;李爱林;;亚低温治疗对神经元兴奋性毒性损伤影响的研究[J];海南医学;2012年22期
10 郁毅刚,徐如祥,姜晓丹,柯以铨;脑损伤保护作用的基础研究:神经元兴奋性氨基酸损伤保护模型的建立[J];中国临床康复;2004年28期
相关会议论文 前5条
1 谢勇;;通过分岔控制改变神经元的兴奋性类型[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
2 刘丙方;王唯晰;杨慧;徐群渊;;Agrin的脑发育学研究及培养海马神经元兴奋性改变对其表达的影响[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年
3 王艳芹;曹荣;陈良为;;神经激肽对基底核神经元兴奋性毒性损伤的干预作用[A];Proceedings of the 7th Biennial Meeting and the 5th Congress of the Chinese Society for Neuroscience[C];2007年
4 任维;;药物和刺激诱导的神经元兴奋性的长时程可塑性[A];中国神经科学学会第九届全国学术会议暨第五次会员代表大会论文摘要集[C];2011年
5 唐红梅;董军;陆大祥;戚仁斌;;MCP-1通过影响钾通道的开放进而影响神经元兴奋性突触后电流[A];中国病理生理学会第九届全国代表大会及学术会议论文摘要[C];2010年
相关重要报纸文章 前2条
1 通讯员 周炜 记者 陈宁;浙大医学部一项研究找到癫痫发病新机制[N];浙江日报;2011年
2 王楠;耳蜗神经元兴奋性损伤与神经营养因子抗损伤研究获成果[N];科技日报;2007年
相关博士学位论文 前8条
1 姚金晶;Neuritin调节神经元钾通道Kv4.2α亚单位表达及神经元兴奋性的机理研究[D];复旦大学;2014年
2 孙晖;调节Kv7通道对VTA区DA能神经元兴奋性及动物抑郁样行为的作用及机制[D];河北医科大学;2016年
3 王玉英;噪声对大鼠受损背根节神经元兴奋性的作用[D];第四军医大学;2004年
4 郝爽;蟾酥活性成分对神经元兴奋性的影响[D];大连理工大学;2012年
5 李澄宇;伴随活动时序依赖突触可塑性的突触前神经元兴奋性的双向调控[D];中国科学院研究生院(上海生命科学研究院);2004年
6 彭小清;膜表面唾液酸化在损伤的初级感觉神经元兴奋性异常中的作用[D];中国协和医科大学;2004年
7 李博;HCN通道在蛛网膜下腔出血后神经元兴奋性紊乱中的作用[D];第三军医大学;2012年
8 贾占峰;神经元M通道、Na通道、TRPV1通道功能调节及神经元兴奋性调节的研究[D];河北医科大学;2009年
相关硕士学位论文 前10条
1 秦文娟;Tyramine通过PKC_θ途径参与疼痛及机制研究[D];苏州大学;2016年
2 王希;淀粉样前体蛋白及其代谢产物Aβ对神经元兴奋性的影响[D];大连医科大学;2013年
3 乔文惠;孕酮对迷走神经背侧核神经元兴奋性的影响[D];西北农林科技大学;2017年
4 周继秀;Dynamin 1的磷酸化状态与神经元兴奋性的相关性研究[D];重庆医科大学;2017年
5 贝俊杰;M电流调节与大鼠SCG神经元兴奋性的关系[D];河北医科大学;2007年
6 任盼;单次可卡因注射对大鼠VTA区DA神经元兴奋性突触传递和内在兴奋性的影响[D];陕西师范大学;2012年
7 秦杨;5-HT在Mes V神经元兴奋性转型中的作用[D];第四军医大学;2008年
8 李洋;促觉醒肽orexin-A和稳态因子腺苷调节大鼠内嗅皮层浅层主要神经元兴奋性及其机制研究[D];第三军医大学;2010年
9 刘斯佳;BTXA对脊髓源性痉挛大鼠运动神经元兴奋性的影响[D];昆明医科大学;2014年
10 贾占峰;神经生长因子对SCG神经元兴奋性以及M电流和Na电流调节的研究[D];河北医科大学;2006年
,本文编号:2217414
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2217414.html