当前位置:主页 > 医学论文 > 心血管论文 >

吸入氢气对慢性低氧性肺动脉高压的影响

发布时间:2018-03-24 00:31

  本文选题:慢性低氧性肺动脉高压 切入点:肺损伤 出处:《南华大学》2015年硕士论文


【摘要】:目的:探索吸入氢气对慢性低氧性肺动脉高压的影响。方法:(1)动物的分组及缺氧处理:将30只,4-6周大健康雄性清洁级C57小鼠(四川省实验动物中心),重量(18-22)g,随机分为3组:空白对照组(Control)、缺氧组(Hypoxia)、缺氧+氢气吸入组(Hypoxia+H2)每组10只。空白组不做任何处理;缺氧组予置于氧仓吸入低氧混合气体(10%O2+90%N2),每天8小时,其余时间置于常氧,持续28天;缺氧+氢气吸入组在低氧混合气体中加入氢气(10%O2+4%H2+86%N2),其他与缺氧组相同。低氧处理28天后,取组织标本检查;(2)慢性缺氧模型检验:28天缺氧暴露结束后,予3%戊巴比妥钠(25mg/kg)腹腔注射,气管插管,颈动脉采血后,即查血常规,统计三组的红细胞、血红蛋白;(3)评估肺动脉高压(Pulmonary arterial hypertension,PAH)模型:造模完成后,开胸取出心脏组织,分离左右心室并称重,求得心室肥厚指数。取同一侧同一肺段,4%多聚甲醛固定后,切片,HE染色,使用image processing program6.0测量小血管内外径,通过心室肥厚指数和肺微小动脉增生两项间接指标来反映;(4)肺损伤评估:肺组织HE染色后。使用光学显微镜进行观察,参照Mikawa方法进行肺病理评分;(5)肺组织炎性因子测定:肺组织匀浆后,提取组织液,应用酶联免疫吸附试验(Enzyme linked immunosorbent assay,ELISA)法检测。(6)肺组织丙二醛(malondialdehyde,MDA)测定:肺组织匀浆后,提取组织液,定量肺组织MDA。结果:(1)红细胞、血红蛋白测定:缺氧组与缺氧+氢气吸入组红细胞数目和血红蛋白量均增高,符合慢性缺氧血液系统变化,但缺氧组的变化最为显著;(2)心室肥厚指数(Right Ventricular Hypertrophy Index,RVHI)和肺血管中膜厚度百分比(Wall thickness percentage,MT%)测定:缺氧组和缺氧+氢气吸入组与对照组相比,RVHI均增高。缺氧组MT%增高,符合肺动脉高压的病理学改变,氢气吸入可改善PAH;(3)肺损伤评估:缺氧组肺病理评分较对照组增高,出现了肺组织间隙的充血和炎细胞的浸润。缺氧+氢气吸入组无明显的肺损伤表现;(4)炎性因子和MDA的检测:Elisa测得肿瘤坏死因子(Turmor necrosis factor-α,TNF-α)和中性粒细胞弹性蛋白酶(Neutrophil elastase,NE)以及肺组织MDA定量,在缺氧组和缺氧+氢气吸入组均有增高,但缺氧+氢气治疗组较轻。结论:吸入氢气通过抗氧化、抗炎作用保护肺组织并改善肺动脉高压。
[Abstract]:Objective: to explore the effect of hydrogen inhalation on chronic hypoxic pulmonary hypertension. Methods: 30 healthy male C57 mice aged 4-6 weeks (Sichuan Experimental Animal Center, weighing 18-22g) were divided into groups and treated with hypoxia. The rats were divided into 3 groups: control group (n = 10), control group (n = 10), hypoxia group (n = 10) and hypoxic hydrogen inhalation group (n = 10). Hypoxia group was placed in oxygen chamber and inhaled hypoxia mixture gas 10O290N _ 2 for 8 hours per day, the rest of the time was placed in normoxic for 28 days. The hypoxic hydrogen inhalation group added 10O2 4%H2 86N 2 to the hypoxic mixture gas, and the others were the same as the hypoxia group. After 28 days of hypoxia treatment, tissue specimens were taken for examination. 3% pentobarbital sodium (25 mg / kg) was injected intraperitoneally, endotracheal intubation was performed, blood routine was checked immediately after carotid artery blood sampling, the red blood cells and hemoglobin of the three groups were counted to evaluate pulmonary arterial hypertensionPAH) model: after the model was made, the heart tissue was taken out by thoracotomy. The left and right ventricle were separated and weighed, and the ventricular hypertrophy index was obtained. After fixed with 4% paraformaldehyde in the same lung segment, the sections were stained with HE, and the diameter of small vessels was measured by image processing program6.0. The evaluation of lung injury was reflected by two indirect indexes of ventricular hypertrophy index and pulmonary arteriolar hyperplasia: lung tissue was stained with HE and observed with optical microscope. According to Mikawa method, lung tissue inflammatory factors were measured: after lung tissue homogenate, tissue extract was extracted. Enzyme linked immunosorbent assay (Elisa) was used to detect malondialdehyde malondialdehyde (MDA) in lung tissue. Results quantitative lung tissue MDA.Results erythrocyte and hemoglobin measurement: the number of red blood cells and hemoglobin content in hypoxia group and hypoxia hydrogen inhalation group were increased, which were consistent with the changes of chronic hypoxia blood system. However, the changes of right Ventricular Hypertrophy index (RVHI) and the percentage of pulmonary vascular mesenchymal thickness (RVHI) in hypoxia group and hypoxic hydrogen inhalation group were higher than those in control group, and that in hypoxia group was higher than that in control group, and that in hypoxia group was higher than that in control group. In accordance with the pathological changes of pulmonary hypertension, hydrogen inhalation could improve the assessment of pulmonary injury: the lung pathological score of hypoxia group was higher than that of control group. Hyperemia and infiltration of inflammatory cells occurred in lung tissue space. There were no obvious lung injury manifestations in hypoxic hydrogen inhalation group. (4) inflammatory factors and MDA were detected. Tumor necrosis factor Turmor necrosis factor- 伪 (TNF- 伪) and neutrophil were detected by MDA. And MDA in lung tissue. Conclusion: hydrogen inhalation can protect lung tissue and improve pulmonary hypertension by anti-oxidation, anti-inflammatory effect.
【学位授予单位】:南华大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R544.1

【相似文献】

相关期刊论文 前8条

1 ;杂志信息[J];中华医学信息导报;1995年03期

2 柳锡永;窒息缺氧与新生儿黄疸的关系[J];中国综合临床;2002年02期

3 祝岩;谷天祥;汪曾炜;朱洪玉;王辉山;张南滨;方敏华;;未成熟鼠缺氧心肌模型的建立[J];中国临床康复;2006年41期

4 杨映波;孙秉庸;杨仲强;王俊元;彭鹰;;清醒山羊缺氧时的颅内动力学改变及速尿的影响[J];四川生理科学动态;1987年01期

5 刘宏雁,郑德明,王维忠,吕国蔚;缺氧耐受形成中各脑区氨基酸含量的变化[J];中风与神经疾病杂志;2000年01期

6 庞诚;低温与缺氧[J];航天医学与医学工程;1992年01期

7 沙建慧,黄晶波,郭宝军,黄晶丹,曾汉英,张长民;音频电对急性低压缺氧小鼠海马神经元超微结构的影响[J];中华物理医学与康复杂志;2003年06期

8 ;[J];;年期

相关会议论文 前3条

1 梁光萍;苏踊跃;陈建;罗向东;杨宗城;;缺氧对人脐静脉内皮细胞增殖与活力的影响[A];第五届全国烧伤救治专题研讨会烧伤后脏器损害的临床救治论文汇编[C];2007年

2 彭毅志;赵晓辉;王元元;;HSP90在PI3K/ATK通路中作用的分子机制[A];第八届西南五省一市烧伤整形学术会议暨贵州省医学会烧伤整形分会2010年学术年会论文汇编[C];2010年

3 彭毅志;赵晓辉;王元元;;HSP90在PI3K/ATK通路中作用的分子机制[A];第五届全国烧伤救治专题研讨会烧伤后脏器损害的临床救治论文汇编[C];2007年

相关硕士学位论文 前4条

1 罗姿;吸入氢气对慢性低氧性肺动脉高压的影响[D];南华大学;2015年

2 王林;正常氧干预对不同程度间歇缺氧大鼠脑组织损伤影响的研究[D];复旦大学;2012年

3 周志军;补肾(千金)复脉液对缺氧大鼠心脑组织一氧化氮及其合酶影响的研究[D];天津中医学院;2002年

4 谢龙;肝癌病人HIF表达与机体缺氧状态的相关性研究[D];福建医科大学;2014年



本文编号:1655926

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/1655926.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户95543***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com