当前位置:主页 > 医学论文 > 心血管论文 >

数据缺失情况下基于支持向量机的心脏病诊断

发布时间:2018-05-06 21:13

  本文选题:缺失值 + 支持向量机 ; 参考:《数学的实践与认识》2017年02期


【摘要】:为在数据缺失的情况下进行心脏病诊断并获得较高的准确率,对缺失值进行处理后,利用径向基函数支持向量机,采用交叉验证和网格搜索寻找最佳惩罚参数和关联参数,对UCI Heart数据集进行分类,多分类准确率为81.89%,二分类准确率为89.61%.仿真结果表明,支持向量机网络模型性能稳定,样本追加能力强,训练时间短,分类效果好,在心脏病等医疗诊断中有很大的应用潜力.
[Abstract]:In order to diagnose heart disease in the absence of data and obtain higher accuracy, after processing the missing value, using radial basis function support vector machine, cross validation and grid search are used to find the best penalty parameter and correlation parameter. The classification of UCI Heart data sets shows that the accuracy of multiple classification is 81.89 and the accuracy of two classification is 89.61. The simulation results show that the support vector machine (SVM) network model has stable performance, strong ability of sample addition, short training time, good classification effect, and has great application potential in medical diagnosis such as heart disease.
【作者单位】: 三峡大学理学院;三峡大学电气与新能源学院;
【基金】:国家自然科学基金(61179025) 湖北省教育厅重点项目(D20111201)
【分类号】:R541;TP18

【相似文献】

相关期刊论文 前10条

1 张向东,毕韶丹,关宏宇;拮抗药化合物活性的支持向量机研究[J];辽宁大学学报(自然科学版);2005年03期

2 罗万春;;基于支持向量机的凝血功能诊断模型[J];数学的实践与认识;2013年06期

3 谢洪波,王志中,黄海;表面肌电的支持向量机分类[J];北京生物医学工程;2004年02期

4 陆强;冯敏;马华;张西学;;模糊聚类支持向量机在步态分类中的应用[J];中国组织工程研究与临床康复;2011年09期

5 史鑫;罗述谦;;支持向量机在医学图像分割中的应用[J];北京生物医学工程;2007年03期

6 李磊;黄水平;;支持向量机原理及其在医学分类中的应用[J];中国卫生统计;2009年01期

7 郑莉丽;李晓强;李福凤;闫西平;王忆勤;王真真;;基于支持向量机的中医望诊唇色自动分类[J];生物医学工程学杂志;2011年01期

8 王浩军,郑崇勋,李映,朱华锋,闫相国;支持向量机在血细胞分类中的应用[J];生物医学工程学杂志;2003年03期

9 周舒冬;张磊;叶小华;杨云升;;支持向量机技术在疾病预后中的应用和比较[J];数理医药学杂志;2007年06期

10 胡康达;符红光;孔祥振;;分级聚类支持向量机在中医舌像分类中的应用[J];计算机应用;2010年S2期

相关会议论文 前10条

1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年

2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年

3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年

4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年

5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年

6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年

8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年

9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年

10 侯澍e,

本文编号:1853885


资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/1853885.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c6f74***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com