当前位置:主页 > 医学论文 > 心血管论文 >

基于小波变换的心电信号P波分析研究及其FPGA实现

发布时间:2018-07-12 09:33

  本文选题:心电信号 + 小波变换 ; 参考:《吉林大学》2015年硕士论文


【摘要】:心脏病发病率高、突发性强并且病情隐蔽,死亡率一直居高不下,已然成为危害人们健康的重要疾病。目前对心脏疾病的处理手段一般是初步诊断、积极预防、及时治疗,因此对心电信号分析研究具有很高的临床价值。心电信号是一种极易受环境影响的非线性的微弱信号,而且常夹杂各种噪声干扰,增加了分析诊断的难度,因此提高心电分析检测系统的精度和准确性显得十分必要。 本文主要研究了心电信号P波的提取及其在FPGA上的检测系统的实现。 对于P波的提取,利用双正交的二次B样条小波作为基函数,对心电信号进行4层分解,根据第4层小波系数确定R波检测阈值MAX和P波检测阈值MIN,在大于MIN和小于MAX的区间内检测模极值对,根据奇异点原理,正负模极大值点的过零点即为P波的波峰。 由于FPGA可以反复编程、集成度高、功耗低的优点,本文基于Atera公司的Cyclone II系列EP2C35F672C8核心芯片,利用Matlab和QuatusII等软件和VHDL、Verilog语言编写程序来设计P波检测模块。P波检测系统分为小波变换模块和检测模块两个部分,小波变换模块对心电信号进行4层分解,每一层的低频系数输出都是下一层的输入,从而得到了第4层上的小波系数;检测模块利用R波检测的阈值MAX和P波检测的阈值MIN,在大于MIN和小于MAX的区域内检测P波的正负模极大值点,根据小波奇异点原理,正负模极大值点的过零点即为P波的波峰。对48组心电数据进行了仿真验证,通过Matlab和QuatusII实验结果的分析表明,本文的检测方法能很好的检测出P波,,并且功耗较低,能实时的运行。
[Abstract]:The incidence of heart disease is high, sudden and hidden, mortality has been high, has become an important disease endangering people's health. At present, the treatment of heart disease is generally preliminary diagnosis, active prevention, timely treatment, so ECG analysis has a high clinical value. Electrocardiogram (ECG) is a kind of nonlinear weak signal which is easily affected by environment, and it is often mixed with various kinds of noise interference, which makes it more difficult to analyze and diagnose. Therefore, it is necessary to improve the accuracy and accuracy of ECG analysis and detection system. This paper mainly studies the extraction of ECG P wave and the realization of detection system on FPGA. For P-wave extraction, the biorthogonal quadratic B-spline wavelet is used as the basis function to decompose the ECG signal into four layers. The R wave detection threshold Max and P wave detection threshold MINM are determined according to the 4th layer wavelet coefficients, and the mode extremum pairs are detected in the interval larger than min and less than Max. According to the singular point principle, the zero crossing point of positive and negative modulus maximum is the peak of P wave. Due to the advantages of repeated programming, high integration and low power consumption, this paper is based on Cyclone II series EP2C35F672C8 core chip of Atera. The software of Matlab and Quatus II and the program written by VHDL Verilog language are used to design the P-wave detection module. The P-wave detection system is divided into two parts: the wavelet transform module and the detection module. The wavelet transform module decomposes the ECG signal into four layers. The output of the low frequency coefficients of each layer is the input of the next layer, thus the wavelet coefficients on the fourth layer are obtained. The detection module uses R wave detection threshold Max and P wave detection threshold MINN to detect the positive and negative modulus maximum of P wave in the region larger than min and less than Max. According to the principle of wavelet singular point, the zero crossing point of positive and negative modulus maximum point is the peak of P wave. 48 groups of ECG data are simulated and verified. The results of Matlab and Quatus II experiments show that this method can detect P wave very well, and the power consumption is low and can run in real time.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R541;TN911.7;TN791

【参考文献】

相关期刊论文 前10条

1 杨海威,詹永麒,胡伟国,夏恒超,闫润强,张永红;12导联心电图P波检测算法[J];北京生物医学工程;2002年02期

2 夏恒超,詹永麒,陈旭华;基于小波变换和波形信息的P波检测方法[J];北京生物医学工程;2003年01期

3 杨永明;韦建敏;刘俊刚;黄晓博;;基于FPGA的实时心电监护系统设计[J];电子技术应用;2007年07期

4 季虎;孙即祥;王春光;;基于小波变换的自适应QRS-T对消P波检测算法[J];电子与信息学报;2007年08期

5 段芳;徐亮;黄新;;人工神经网络在医学中的应用[J];九江医学;2008年02期

6 段靖芳;郝莹;;基于小波变换和神经网络的心电信号P波检测[J];生物医学工程研究;2005年04期

7 王笑梅,王辉;基于小波的ECG信号噪声消除[J];上海师范大学学报(自然科学版);2002年02期

8 于学鸿,许小汉;基于神经网络的波型检测方法[J];生物医学工程学杂志;2000年01期

9 张威;王旭;葛琳琳;张卓;;基于小波变换的子带自适应滤波算法及仿真[J];系统仿真学报;2006年04期

10 毛玲;张国敏;孙即祥;;基于位置估计与识别后处理的心电信号P波检测[J];信号处理;2009年06期

相关博士学位论文 前1条

1 姚成;心电信号智能分析关键技术研究[D];吉林大学;2012年



本文编号:2116719

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/2116719.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户16a5a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com