TLR4诱导自噬与动脉粥样硬化斑块稳定性的关系以及干预治疗的研究
[Abstract]:Cerebrovascular disease is one of the major diseases that threaten human life. Many studies have confirmed that rupture of vulnerable atherosclerotic plaques and loss of embolus are important causes of acute cardiovascular events and stroke. Carotid plaques cause vascular stenosis or occlusion, and sudden rupture of plaques leads to acute arterial obstruction. Therefore, early identification of carotid plaques, evaluation of plaque stability and intervention to prevent their progression are of great significance for the prevention and treatment of cardiovascular and cerebrovascular diseases. Materials and Methods: Twenty eight-week-old ApoE (-/-) mice were randomly divided into four groups after one week of adaptive feeding. Five mice in each group were divided into control group, normal diet group, 10-week model group and 20-week model group. The rats in the 10-week model group and the 20-week model group were sacrificed after 10 and 20 weeks of high-fat diet respectively. The serum total cholesterol (TC), triglyceride (TG), oxidized low-density lipoprotein (oxLDL) and carotid artery and aorta specimens were taken to observe the plaque, HE staining, oil red O staining and elastic fiber staining were performed. The levels of macrophages (MOMA-2), smooth muscle actin (a-actin), TLR4, interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), tumor necrosis factor (TNF-a) in carotid plaque were detected by immunohistochemistry. Results: 1. The levels of TC, TG and oxLDL in the normal diet group were higher than those in the control group (P The levels of TC, TG and oxLDL in serum of model group at 2.20 weeks were higher than those of control group and model group at 10 weeks (P 0.05). The levels of AP, lipid components in plaque increased, elastic fibers interrupted, decreased, collagen components decreased, macrophages increased and smooth muscle cells decreased. The levels of TC, TG and oxLDL in model group at 3.20 weeks were higher than those of control group and model group at 10 weeks. The expression of TLR4, IL-1beta, IL-6 and TNF-alpha in carotid artery plaque increased in group A (P 0.05). Conclusion: 1. ApoE (-/-) mice could successfully establish AP artery model by high-fat diet, and the longer the high-fat diet, the more obvious the AP. 2. ApoE (-/-) mice established atherosclerotic animal model by high-fat diet, the oxLDL level increased, arterial and plaque inflammation. 3. Apoe (-/-) mice with increased atherosclerosis, increased expression of TLR4 and inflammatory factors, may participate in the promotion of atherosclerotic plaque progression. Part 2: Tlr4 induction Objective: to observe the relationship between the expression of TLR4 and the stability of atherosclerotic plaque in ApoE (-/-) mice, and to explore the effect of autophagy induced by TLR4 on the stability of atherosclerotic plaque (ap). LPS (1 mg / kg) was injected intraperitoneally twice a week in the LPS group; tak-242 (0.3 mg / kg) was injected intraperitoneally twice a week in the Tak group; and the control group was injected intraperitoneally with the corresponding normal saline of equal volume twice a week in the control group. The three groups continued to eat high-fat diet. After 10 weeks of intraperitoneal injection, the serum total cholesterol was detected. (tc), triglyceride (tg), oxidized low density lipoprotein (oxldl). carotid artery and aorta specimens were taken to observe the plaque condition. he staining, oil red O staining, elastic fiber staining and Sirius scarlet staining were performed. macrophages (moma-2), smooth muscle actin (a-actin) protein level and Toll-like were detected by immunohistochemistry. The expression of receptor 4 (tlr4), interleukin-1 beta, interleukin-6 and TNF-a were detected by Western blot. the levels of tc, TG and oxLDL in serum of mice in LPS group were higher than those in control group and Tak Group (p0.05). the levels of TG and oxLDL in Tak Group were lower than those in control group (p0.05). 2. the contents of macrophages in AP group were higher than those in control group and Tak Group (mamo-2 immunohistochemical staining positive). Sex rate increased (p0.05), Tak group compared with the control group AP macrophage content decreased (p0.05). LPS group compared with the control group and Tak mice AP smooth muscle cell content (a-actin immunohistochemical staining positive rate) decreased (p0.05); Tak group compared with the control group smooth muscle content increased (p0.05). 3. LPS group mice AP compared with the control group and Tak group, tlr4, IL-1 beta, il-6, TNF-a. The expression of tlr4, IL-1 beta, IL-6 and TNF-a in the Tak Group was lower than that in the control group (p0.05). 4. the expression of lc3ii / _, p62 and beclin-1 in the arteries of the LPS group and the Tak Group were different (p0.05). the expression of lc3ii / _in the LPS group was higher than that in the control group and the Tak Group (p0.001). the expression of beclin-1 in the LPS group was higher than that in the control group and the Tak Group (p0.001). The expression of beclin-1 in Group K was lower than that in control group (p0.001). the expression of p62 in LPS group was higher than that in control group and Tak Group (p0.001). the expression of p62 in Tak Group was higher than that in control group (p0.01). conclusion 1. LPS can up-regulate the expression of aptlr4, and tak-242 can down-regulate the expression of tlr4. 2. LPS can up-regulate the expression of tlr4, promote the secretion of inflammatory factors, aggravate the disorder of lipid metabolism, and significantly increase the level of autophagy. High levels of p62 protein may lead to excessive autophagy and autophagy dysfunction, but aggravate the progress and vulnerability of ap. 3. tak-242 down-regulates the expression of tlr4, reduces macrophages, increases the content of smooth muscle cells, and increases the stability of plaque. part three: atorvastatin and probucol combined with TLR4 AIM: To evaluate the effect of atorvastatin and probucol on autophagy induced by TLR4 and explore the mechanism of its anti-atherosclerosis effect. METHODS: Twenty-four apoE (-/-) mice aged 8 weeks were fed with high-fat diet for 10 weeks, and then randomly divided into three groups, eight in each group, including control group, statin group and combined group. The control group was given isovolumetric ultrapure water once a day for 10 weeks, while the statin group was given atorvastatin (10mg/kg/d) for 10 weeks, once a day; (3) the combined group was given probucol feed, and atorvastatin (10mg/kg/d) for 10 weeks, once a day. Carotid artery and aorta specimens were taken to observe the plaque. he staining, o il red O staining, elastic fiber staining and Sirius red staining were performed. the levels of macrophages (moma-2), smooth muscle actin (a-actin) protein, Toll-like receptor 4 (tlr4), IL-1 beta, il-6, TN in the plaque were detected by immunohistochemistry. The levels of TC and oxLDL in statin group and combined group were lower than those in control group, and the levels of oxLDL in combined group were lower than those in statin group (p0.05). 2. compared with the control group, the elastic fibers of carotid artery AP in statin group and combined group were more intact, the content of lipid decreased, the content of collagen increased, tlr4, IL-1 beta, and IL-1 beta. Compared with statin group, the content of AP macrophages in carotid artery decreased, and the vulnerability index decreased (p0.05). 3. the expression of LC3 II / i, p62 and beclin-1 in arteries of control group, statin group and combination group were different (p0.05). statin group and combination group were compared with control group. Compared with the control group and statin group, the expression of LC3 II/I increased and the expression of P62 decreased in the combined group (P 0.05). Conclusion: 1. Atorvastatin can down-regulate the expression of TLR4, reduce blood lipid, inhibit the secretion of oxidative stress and inflammatory factors, and increase the stability of plaque. 2. Atorvastatin combined with probucol is more effective than alone. Atorvastatin can inhibit oxidative stress, decrease macrophage content, increase autophagy level, exert stronger anti-atherosclerosis effect, and increase plaque stability more effectively.
【学位授予单位】:天津医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R543.5
【相似文献】
相关期刊论文 前10条
1 叶青;郑民华;;自噬的分子机制与病理生理意义[J];国际病理科学与临床杂志;2007年04期
2 何韬;王海杰;谭玉珍;;自噬在细胞存活和死亡中的作用[J];生理科学进展;2008年01期
3 张志才;邵增务;;自噬分子机制的研究进展[J];现代生物医学进展;2008年01期
4 赵勇;师长宏;伍静;张海;;自噬的形态特征及分子调控机制[J];中国比较医学杂志;2010年10期
5 王梅;李庆林;;自噬与癌症的治疗[J];安徽医药;2010年08期
6 伍静;赵勇;师长宏;张海;;自噬的形态特征及分子调控[J];现代生物医学进展;2010年20期
7 王雄;谭璐;;自噬研究进展[J];亚太传统医药;2010年10期
8 卞龙艳;;运动与自噬的关系进展研究[J];齐齐哈尔医学院学报;2011年07期
9 王伟;徐忠东;陶瑞松;;肿瘤发生过程中自噬与凋亡关系的研究[J];合肥师范学院学报;2011年06期
10 王光辉;;自噬与疾病[J];生物化学与生物物理进展;2012年03期
相关会议论文 前10条
1 韦雪;漆永梅;张迎梅;;镉、活性氧自由基与自噬发生的分子机制[A];中国活性氧生物学效应学术会议论文集(第一册)[C];2011年
2 秦正红;粱中琴;陶陆阳;黄强;刘春风;蒋星红;倪宏;邢春根;;自噬在细胞生存与死亡中的作用[A];中国药理学会第九次全国会员代表大会暨全国药理学术会议论文集[C];2007年
3 秦正红;;自噬与肿瘤和神经细胞生存——药物作用的新靶位[A];全国生化与分子药理学药物靶点研讨会论文摘要集[C];2008年
4 李芹;丁壮;;自噬功能研究进展[A];中国畜牧兽医学会家畜传染病学分会第八届全国会员代表大会暨第十五次学术研讨会论文集[C];2013年
5 胡晨;张璇;滕衍斌;胡海汐;周丛照;;家蚕中自噬相关蛋白Atg8的结构研究[A];华东六省一市生物化学与分子生物学会2009年学术交流会论文摘要汇编[C];2009年
6 陈希;李民;Xiao-Ming Yin;李林洁;;通过不同途径诱导自噬的化合物对Atg9的依赖性不同[A];细胞—生命的基础——中国细胞生物学学会2013年全国学术大会·武汉论文摘要集[C];2013年
7 陈涓涓;敬静;蔡元博;张俊龙;;针对活体细胞自噬行为的发光金属配合物的设计[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年
8 宁晓洁;钟自彪;王彦峰;付贞;叶启发;;缺血再灌注诱导小鼠肝细胞自噬[A];2013中国器官移植大会论文汇编[C];2013年
9 吴晓琦;李丹丹;邓蓉;江山;杨芬;冯公侃;朱孝峰;;CaMKKβ磷酸化Beclin 1调控自噬及其在肿瘤治疗中的作用[A];2011医学科学前沿论坛第十二届全国肿瘤药理与化疗学术会议论文集[C];2011年
10 周鸿雁;裴中;陈杰;申存周;钱浩;刘妍梅;冼文彪;郑一帆;陈玲;;线粒体动力改变参与了LRRK2突变导致的自噬[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
相关重要报纸文章 前3条
1 生命学院;俞立课题组在《科学》发文揭示自噬调控的重要机制[N];新清华;2012年
2 周飞 张粹兰;花榈木“自噬”可抗癌[N];广东科技报;2011年
3 张明永;水稻自噬基因研究取得新进展[N];广东科技报;2011年
相关博士学位论文 前10条
1 贾盛楠;转录因子p8调控自噬的功能研究[D];浙江大学;2015年
2 皮会丰;DNM1L蛋白介导的线粒体自噬在镉致肝脏毒性中的作用研究[D];第三军医大学;2015年
3 李倩;miRNAs介导的自噬抑制在类鼻疽杆菌感染免疫逃逸中的作用机制研究[D];第三军医大学;2015年
4 黎炳护;激活TRPV1诱导自噬在血管平滑肌细胞泡沫化中作用及机制研究[D];第三军医大学;2015年
5 陈江伟;自噬在椎间盘退变中的作用及机制研究[D];上海交通大学;2014年
6 李荣荣;自噬在布比卡因肌毒性中的作用及机制研究[D];南京医科大学;2015年
7 王维;NF-κB信号通路参与介导的自噬在高血压大鼠心血管重构的作用研究[D];山东大学;2015年
8 刘春朋;日粮硒缺乏对鸡肝脏蛋白质组学及自噬变化的影响[D];东北农业大学;2015年
9 梁蓓蓓;P53凋亡刺激蛋白ASPP2调控细胞自噬的研究[D];上海交通大学;2012年
10 李少莹;自噬在LPS诱导的肺泡上皮细胞死亡中的作用及机制研究[D];第三军医大学;2015年
相关硕士学位论文 前10条
1 匡红;Jnk2通过smARF的降解来调控压力诱导的线粒体自噬及组织损伤[D];浙江理工大学;2015年
2 洪永桃;自噬在类风湿关节炎滑膜成纤维细胞中的作用及甲氨蝶呤对自噬的影响[D];川北医学院;2015年
3 李宁;自噬在吗啡心肌保护中的作用及机制研究[D];河北联合大学;2014年
4 刘冰;脑缺血预处理对大鼠局灶性脑缺血再灌注后自噬及凋亡的影响[D];河北联合大学;2014年
5 王存凯;microRNA-30a-5p通过抑制自噬阻止肝星状细胞激活[D];河北医科大学;2015年
6 张宇程;泛素连接酶HOIL-1L在线粒体自噬中的功能与机制研究[D];中国人民解放军军事医学科学院;2015年
7 唐芙蓉;自噬对奶山羊雄性生殖干细胞生物学特性的影响[D];西北农林科技大学;2015年
8 陈军童;肾损伤分子1对高糖诱导人肾小管上皮细胞自噬作用的影响[D];郑州大学;2015年
9 包勇;Kap1在LBH589诱导的乳腺癌细胞MCF-7自噬形成中的作用[D];复旦大学;2013年
10 魏园玉;P53缺失型HL-60白血病细胞内Nucleostemin下调对mTOR通路介导的自噬活性的影响[D];郑州大学;2015年
,本文编号:2177582
本文链接:https://www.wllwen.com/yixuelunwen/xxg/2177582.html