端粒酶活性变化在动脉粥样硬化斑块发生发展过程中的作用机制
[Abstract]:BACKGROUND AND OBJECTIVE Vascular calcification, especially atherosclerotic calcification, is an important factor in cardiovascular and cerebrovascular diseases. Vascular calcification is an active, highly controllable, preventable and reversible biological process initiated by a variety of cells and similar to bone development. Vascular calcification is mainly the calcification of vascular smooth muscle cells (VSMCs). Vascular smooth muscle cells (VSMCs) express a small amount of telomerase. Studies have shown that atherosclerotic plaques. The telomere length of VSMCs was significantly shorter than that of normal VSMCs, and telomerase activity was also significantly lower, but the regulatory mechanism of telomerase activity and its role in vascular calcification were not clear. The expression of related transcription factor 2 (RUNX2) promotes the formation of VSMCs nodules. It is found that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) can mediate the proteasome hydrolysis by binding to I kappa B alpha, promote the entry of NF-kappa B into the nucleus and activate the inflammatory signaling pathway. hnRNPA1 is the most abundant member of the hnRNPs family. A class of proteins that regulate the expression of target genes by regulating mRNA synthesis processes such as transcription, splicing, stability, and mRNA transport from nucleus to cytoplasm. Transriptase, hTERT) and hnRNPA1 expression were significantly up-regulated. It has been reported that hnRNPA1 can prolong telomere length and prevent premature senescence induced by telomere depletion. Therefore, this study is to clarify whether hnRNPA1 can regulate telomerase activity and I-kappa Balpha/NF-kappa B signaling pathway in vascular smooth muscle cells, thereby affecting vascular smooth muscle fineness. Methods 1. Human umbilical artery smooth muscle cells (HUASMCs) were isolated and cultured, and pcDNA3.1-hnRNP A1 eukaryotic expression vector was constructed and transfected into HUASMCs. The effect of hnRNP A1 on telomerase activity, proliferation and apoptosis of HUASMCs was detected by flow cytometry. 2. Calcification model of HUASMCs was established. The expression of genes related to calcification of HUASMCs was detected by real-time fluorescence quantitative PCR and Western blot. The mechanism of hnRNP A1 in the process of vascular smooth muscle calcification was elucidated. Results 1. HUASMCs cultured in vitro showed that the expression of telomerase and hnRNP A1 were significantly up-regulated during the process of HUASMCs differentiation from contractile to synthetic. Overexpression of hnRNP A1 significantly increased telomerase activity by 2.7 times, but had no significant effect on the proliferation and apoptosis of HUASMCs. 2. Calcification model of HUASMCs was established by overexpression of hnRNP A1. The results showed that hnRNPA1 could promote the formation of calcified nodules in HUASMCs, but the molecular mechanism of hnRNPA1 was not mediated by I-kappa Balpha/NF-kappa B signaling pathway, and the specific mechanism needed to be further clarified. Overexpression of hnRNP A1 significantly up-regulates telomerase activity and promotes calcification of vascular smooth muscle cells during atherosclerosis, but the specific molecular mechanisms need to be further clarified. Macrophage activity in the heart and plaque can cause active inflammation, calcification of fibrous cap smooth muscle cells and lipid accumulation, leading to plaque rupture, sudden death, acute myocardial infarction, unstable angina and ischemic stroke. However, the molecular mechanism of telomerase activation remains unclear. In our previous work, we found that the expression of human telomerase reverse transcriptase (hTERT) in the macrophage-rich region of human carotid atherosclerotic plaques was significantly up-regulated and the inflammation was active. In addition, we also found that monocytes were induced in vitro. In the process of macrophage differentiation, the expression of hTERT is up-regulated, and a special microRNAs (microRNAs) molecule, microRNAs-216a, is up-regulated. It has been suggested that microRNAs-216a may be up-regulated in aging cells, inhibit endothelial autophagy, participate in lipid metabolism of macrophages, and may affect atherosclerotic cardiovascular disease. Our further experimental results suggest that microRNA216a mediates telomerase activation in monocytes and macrophages, promotes macrophage activation and inflammation. The purpose of this study is to explore the molecular mechanism of microRNA216a regulating telomerase activation in macrophages, and to elucidate its effect on macrophage differentiation and function, which is called atherosclerosis. Methods 1. Carotid plaque tissues from patients after carotid endarterectomy were collected for immunohistochemistry and immunofluorescence staining to study the co-localization of monocyte/macrophage and hTERT in carotid plaque. 2. In vitro phorbol-12-myristate-13-acetate (PMA) induced THP1. Monocytes differentiate into macrophages, explore the changes of expression of microRNAs-216a and hTERT, overexpress and inhibit microRNAs-216a, and study the molecular mechanism of microRNAs regulating telomerase activation in monocytes/macrophages; 3. ApoE-/-male mice were used for right carotid artery ligation, high-fat diet, construction of atherosclerosis model, study of microRNAs-21. Results 1. Immunohistochemistry and immunofluorescence staining of human carotid atherosclerotic plaque tissue specimens. The results showed that hTERT was specifically expressed in the macrophage-rich region and telomerase activity in the plaque compared with normal blood vessels. The expression of microRNA-216a and hTERT was significantly increased in THP-1 cells induced to macrophage. Further studies showed that microRNA-216a regulated the telomerase activity of monocytes/macrophages through SMAD3/NF-kappa B signaling pathway. 3. Mice atherosclerosis model showed that microRNA-216a promoted carotid monocytes/macrophages to M1. Conclusion MicroRNA216a can regulate the telomerase activity of monocytes and macrophages through SMAD3/NF-kappa B signaling pathway, promote the transformation of macrophages to M1 and the secretion of inflammatory cytokines, thereby promoting the activation of monocytes and macrophages. The development of atherosclerotic plaque.
【学位授予单位】:北京协和医学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R543.5
【相似文献】
相关期刊论文 前10条
1 郑振群;;关于巨噬细胞的几个问题[J];山西医药杂志;1974年12期
2 ;豚鼠巨噬细胞经P_(204)处理后的抗石英细胞毒作用[J];国外医学参考资料(卫生学分册);1976年04期
3 邓侠进;;巨噬细胞的抗癌作用[J];遵义医学院学报;1979年02期
4 陆天才;;疾病对肺巨噬细胞的影响[J];煤矿医学;1982年01期
5 郭瑞清;祝彼得;;一种分离巨噬细胞的简单方法[J];滨州医学院学报;1990年02期
6 谢志坚;巨噬细胞异质性[J];医学综述;2001年06期
7 饶艳;运动及神经内分泌对巨噬细胞功能的调节[J];体育与科学;2002年05期
8 朱金元;;吸烟对肺巨噬细胞的影响[J];浙江医学教育;2003年01期
9 张俊峰;过氧化物酶体增殖物激活受体与单核/巨噬细胞系[J];医学综述;2004年03期
10 韦锦学;顾军;;巨噬细胞的激活诱导死亡[J];生命科学;2006年02期
相关会议论文 前10条
1 史玉玲;王又明;丰美福;;巨噬细胞激活作用的研究[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年
2 吴国明;周辉;;巨噬细胞和创伤纤维化[A];2009年浙江省骨科学学术年会论文汇编[C];2009年
3 李奇;王海杰;;透明质酸对于淋巴结巨噬细胞运动的影响[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年
4 刘革修;欧大明;刘军花;黄红林;廖端芳;;丙丁酚在体外能抑制巨噬细胞脂质氧化介导的低密度脂蛋白氧化并调节氧化巨噬细胞的分泌功能[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
5 叶金善;杨丽霞;郭瑞威;;环氧化酶-2/前列腺素E_2在血管紧张素Ⅱ刺激巨噬细胞表达细胞外基质金属蛋白酶诱导因子中的作用[A];第十三次全国心血管病学术会议论文集[C];2011年
6 秦帅;陈希;孔德明;;构建由绿色荧光标记巨噬细胞的转基因斑马鱼系[A];贵州省中西医结合内分泌代谢学术会论文汇编[C];2012年
7 武剑华;徐惠绵;;肿瘤相关巨噬细胞在胃癌中的相关研究[A];第9届全国胃癌学术会议暨第二届阳光长城肿瘤学术会议论文汇编[C];2014年
8 何军;;血凝素样氧化型低密度脂蛋白受体升高巨噬细胞内胆固醇水平[A];中华医学会第11次心血管病学术会议论文摘要集[C];2009年
9 宋盛;周非凡;邢达;;PDT诱导的凋亡细胞对巨噬细胞NO合成的影响[A];第七届全国光生物学学术会议论文摘要集[C];2010年
10 张磊;朱建华;黄元伟;姚航平;;血管紧张素Ⅱ对巨噬细胞(THP-1重细胞)凝集素样氧化低密度脂蛋白受体表达的影响[A];浙江省免疫学会第五次学术研讨会论文汇编[C];2004年
相关重要报纸文章 前10条
1 通讯员 李静 记者 胡德荣;恶性肿瘤巨噬细胞未必皆“恶人”[N];健康报;2014年
2 兰克;以尝试用巨噬细胞治瘫痪[N];科技日报;2000年
3 薛佳;免疫系统——人体的“卫士”[N];保健时报;2009年
4 记者 胡德荣;铁泵蛋白“维稳”铁代谢作用首次阐明[N];健康报;2011年
5 侯嘉 何新乡;硒的神奇功能[N];中国食品质量报;2003年
6 唐颖 倪兵 陈代杰;巨噬细胞泡沫化抑制剂研究快步进行[N];中国医药报;2006年
7 刘元江;新发现解释肿瘤为何易成“漏网之鱼”[N];医药经济报;2007年
8 本报记者 侯嘉 通讯员 何新乡;今天你补硒了吗[N];医药经济报;2003年
9 左志刚;升血小板药使用注意[N];医药养生保健报;2007年
10 记者 许琦敏;“铁泵”蛋白帮助回收铁元素[N];文汇报;2011年
相关博士学位论文 前10条
1 周赤燕;巨噬细胞MsrA对动脉粥样硬化的干预研究[D];武汉大学;2013年
2 章桂忠;TIPE2蛋白调控细胞增殖和炎症的机制研究[D];山东大学;2015年
3 张瑜;DKK1抑制巨噬细胞内脂质沉积及其相关分子机制[D];山东大学;2015年
4 孟涛;异丙酚对心脏收缩功能的抑制作用及其对巨噬细胞分泌功能调节的机制研究[D];山东大学;2015年
5 周兴;基于酵母微囊构建新型口服巨噬细胞靶向递送系统的研究[D];第三军医大学;2015年
6 蒋兴伟;Tim-3对巨噬细胞极化的调控机制研究[D];中国人民解放军军事医学科学院;2015年
7 刘伯玉;清道夫受体A介导小鼠巨噬细胞吞噬钩端螺旋体研究[D];上海交通大学;2013年
8 杨绍俊;miRNA-155介导ESAT-6诱导巨噬细胞凋亡的分子机制及其在结核诊断中的作用[D];第三军医大学;2015年
9 翟光耀;单核/巨噬细胞Ly6C~(low)亚群在心肌梗死后瘢痕形成期的抗炎特性研究[D];北京协和医学院;2014年
10 韩露;TRB3介导的脂肪组织巨噬细胞极化与糖尿病冠状动脉病变关系的研究[D];山东大学;2015年
相关硕士学位论文 前10条
1 李健;端粒酶活性变化在动脉粥样硬化斑块发生发展过程中的作用机制[D];北京协和医学院;2017年
2 张雪;人参皂甙Rb1调节巨噬细胞极化稳定动脉粥样硬化斑块及其机制研究[D];青岛大学;2017年
3 马春梅;AP0E~(-/-)小鼠TLR9介导巨噬细胞极化效应对动脉粥样硬化作用的研究[D];福建医科大学;2015年
4 张译丹;盐皮质激素受体拮抗剂调控巨噬细胞表型对实验性矽肺的作用[D];河北医科大学;2015年
5 卢文冉;HCV core蛋白作用的巨噬细胞培养上清对肝细胞生物学性状的影响[D];河北医科大学;2015年
6 李文建;载脂蛋白E影响巨噬细胞因子表达及分型的机制研究[D];河北医科大学;2015年
7 曹爽;高糖对巨噬细胞TLR4信号转导的调节作用[D];河北医科大学;2015年
8 宁程程;肿瘤相关巨噬细胞在子宫内膜癌雌激素敏感性中的作用及机制研究[D];复旦大学;2014年
9 高龙;PLD4在肿瘤相关巨噬细胞抑制结肠癌增殖中的作用研究[D];成都医学院;2015年
10 任虹;感染期子宫颈癌U14细胞荷瘤小鼠抑制巨噬细胞CCL5分泌的机制研究[D];河北医科大学;2015年
,本文编号:2178631
本文链接:https://www.wllwen.com/yixuelunwen/xxg/2178631.html