血小板源外泌小体中microRNAs作为预测动脉粥样硬化血栓形成的机制研究
[Abstract]:BACKGROUND/OBJECTIVE: Coronary atherosclerotic heart disease (CAHD) is one of the most important diseases threatening the life and health of Chinese people. Acute coronary syndrome (ACS) is the most serious complication of coronary heart disease with high disability and mortality. Platelets play an important role in ACS, and highly reactive platelets are associated with ACS. However, in vitro platelet function tests can not fully reflect the platelet function in vivo. Therefore, markers that accurately reflect the platelet activation state in vivo can be used. Although microRNAs (microRNAs) and platelet function have been reported in the literature, the value of microRNAs in plasma exosomes as a marker of platelet activity and predicting acute cardiovascular events has not been studied. In addition to (ApoE-/-) mice undergoing double carotid artery stenosis surgery (TS), atherosclerotic thrombosis models were established; (2) platelet activation-related microRNAs-223, microRNAs-339 and microRNAs-21 in plasma exosomes before thrombosis were studied; (3) and thrombin activation in plasma exosomes and in vitro of these microRNAs in thrombotic models. The expression level of platelet-derived exosomes was consistent; (4) The role of thrombin-activated platelet-derived exosomes in atherosclerotic thrombosis and its regulatory mechanism on plaque vascular smooth muscle cells (SMCs). Methods: ApoE-/-mice (n=55) were fed with high-fat diet for six weeks, and double stenosis (TS) surgery (n=40) and sham hands were performed. After operation (n=15), the blood flow in the lumen of TS group was examined by vascular ultrasound four weeks after operation, and the blood was taken from the left jugular vein. At the seventh week after operation, the thrombosis was examined by pathological section. RNA, reverse transcription of cDNAs, real-time fluorescence quantitative PCR, cel-microRNA-39 as internal reference, AACT method was used to compare the expression of microRNA223, microRNA339 and microRNA21 between the two groups. Differential ultracentrifugation was used to extract platelet-derived exosomes from human and mouse platelets. The expression of microRNAs-233, microRNAs-339 and microRNAs-21 in platelet-derived exosomes induced by thrombin and PBS was compared. The aortic vessels of VVT mice (4-6 mice) were isolated and cultured for SMCs. The concentration and time curve of SMCs uptake exosomes were analyzed by laser confocal microscopy. The changes of microRNAs-223, microRNAs-339 and microRNAs-21 after SMCs uptake were detected according to the metabolic time of exosomes in vitro. The changes of microRNAs may regulate the target genes of SMCs at RNA level, and the changes of immunofluorescence expression at protein level were detected by laser confocal microscopy, and the thrombus segments were verified in vivo. The effects of platelet exosomes on the proliferation and apoptosis of SMCs were analyzed by Ki-67 immunofluorescence and TUNEL staining. (1) The incidence of thrombosis in TS group was 37.5% (15/40), of which plaque ulcer was 35% (14/40) and plaque rupture was 2.5% (1/40); the ratio of intima-media to intima in SMCs group was 0.119 (+ 0.029) vs 0.504 (+ 0.038) vs 1.078 (+ 0.072) vs 1.195 (+ 0.116), and the fluorescence intensity of Ki-67 in SMCs group was 0.001. The expression of TUNEL signal in sham group, TS proximal end, thrombus segment and TS distal end were 1.002 + 0.027 vs 3.102 + 0.357 vs 2.837 + 0.063 vs 3.120 + 0.403, P = 0.001, respectively. The expression of TUNEL signal in sham group, TS proximal end, thrombus segment and TS distal end were 0.997 + 0.095 vs 0.945 + 0.091 vs 5.472 + 1.727 vs 1.727 + 0.242, P = 0.001, respectively. (2) Four weeks after TS operation, carotid artery ultrasonography showed that there was no lumen occlusion. At this time, plasma exosome microRNAs-223, microRNAs-339 and microRNAs-21 were expressed in thrombosis of TS group and in sham group. The expression multiples of microRNAs-223, microRNAs-339 and microRNAs-21 were 1.83 [0.35vs 0.97] 0.15, P = 0.017, respectively. 3.56 [+0.25 vs 1.03 [(1.03 [/0.05 [/0.48 vs 0.17 [/0.04, P = 0.002; 1.43 [/0.31 vs 0.31 vs 0.28 [/0.07, P = 0.07, P = 0.01. (3) After PBS treated human platele, the multiples of microRNA-233, microRNA-339 and microRNA-339 and microRNA-21 in Platele-derived exsecretory corpuscle and debris were 2.05 [/0.48 vs 0.48 vs 0.17 [/0.04, P = 0.04, P = 0.002; 1.43 [/0.31 vs 0.31 vs 0.28 [/0.28 [p0.001 The changes of thrombin on PBS-treated mice platelets were as follows: 1.34+0.10 vs 0.45+0.02, P 0.001; 1.50+0.38 vs 0.40+0.05, p=0.007; 1.41+0.23 vs 0.47+0.12, p=0.003. (4) SMCs uptake of platelet-derived exosomes increased with the increase of PBS concentration, and the uptake time curve conformed to the parabolic model: f(x) =-0.1345 x2+3.2978x-1.0153, x (h), R2 = 1.0153, R2 = 0.003. At 0.9906, SMCs began to take up exosomes at 0.5 h, reached the peak at 12.25 h, and were completely metabolized by cells at 24 h. The expression levels of intracellular microRNAs-223, microRNAs-339 and microRNAs-21 in SMCs treated with platelet-derived exosomes at 24 h were 3.780 (+ 0.085) vs 1.027 (+ 0.041), p0.001, 3.607 (+ 0.1100). The analysis of the enrichment pathway of 993+0.047, p0.001:5.620+0.269 vs 1.007+0.054, p0.001.KEGG indicated that 42 of the target genes involved in the MAPK pathway were microRNAs-223, microRNAs-339 and microRNAs-21, which ranked second in the total pathway. The number of genes involved in the regulation accounted for 2.9% of the total pathway genes, p=5.8x105. There was a significant correlation between the expression level of PDGFR beta mRNA in platelets. The expression of PDGFR beta in SMCs treated with exosomal bodies was significantly lower than that in SMCs treated with exosomal bodies: 0.67 (+ 0.19) vs 1.00 (+ 0.05), P = 0.048; the protein level decreased to: 0.68 (+ 0.09 vs 1.00 (+ 0.20), P = 0.005. Moreover, the fluorescence intensity of PDGFR beta in sham group was baseline, and the expression of PDGFR beta in TS group was significantly higher than that in thrombosis group: 3.03 (+ 0.42 vs 1.00 (+ 0.10), P 0.001. The expression of PDGFR-beta in SMCs decreased significantly: 2.15.10 vs 3.92.28, P = 0.004.Ki-67 positive cells decreased in SMCs pretreated with platelet-derived exosomes: 4.15 -1.91% vs 8.40 -2.83%, P = 0.047; TUNEL positive cells increased: 13.35 -1.45% vs 5.85 -1.57%, P = 0.025; suggesting that platelet-derived exosomes were effectively inhibited Conclusion: Increased levels of microRNAs-223, microRNAs-339 and microRNAs-21 in plasma exosomes are associated with predicting thrombosis, which may be due to increased platelet activation and release. The down-regulation of PDGFRbeta expression in thrombotic segments of the model further validates the role of platelet exosomes in atherosclerotic thrombosis in vivo. This study may provide a new pathway for signal transduction between platelets and SMCs, and platelet exosomes may be a potential predictor of atherosclerotic thrombosis. Biomarkers.
【学位授予单位】:北京协和医学院
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R541.4
【相似文献】
相关期刊论文 前10条
1 张昌明;张婉芬;刘春蓓;曾科;刘志红;;循环microRNAs与局灶节段性肾小球硬化患者疾病活动的关系[J];肾脏病与透析肾移植杂志;2013年04期
2 魏丽萍;许振坤;姚朱华;;MicroRNAs在冠状动脉粥样硬化性心脏病中的作用及研究进展[J];医学综述;2011年16期
3 任景怡;许宁;韩冠平;陈红;;microRNAs参与动脉粥样硬化疾病的发生[J];中国生物化学与分子生物学报;2011年06期
4 丁婧;孟雁;;microRNAs与糖尿病[J];中国糖尿病杂志;2010年07期
5 徐莎;刘厚奇;;MicroRNAs与信号转导及转录激活因子[J];第二军医大学学报;2013年04期
6 张婉芬;张昌明;刘春蓓;秦卫松;郑春霞;曾科;刘志红;;尿液microRNAs作为局灶节段性肾小球硬化疾病活动生物标志物的研究[J];肾脏病与透析肾移植杂志;2013年04期
7 谭胜;朱涛;;MicroRNAs在消化系相关肿瘤中的研究[J];胃肠病学和肝病学杂志;2009年03期
8 何相宜;袁耀宗;;胰腺癌与糖尿病、胃肠道微生态和microRNAs关系的研究现状[J];胃肠病学;2014年04期
9 曹美群;陈德珩;张春虎;吴正治;;抑郁模型大鼠海马内特异性microRNAs的筛选以及柴胡疏肝散的干预作用[J];中国中药杂志;2013年10期
10 高金保;刘霞;;非酒精性脂肪性肝病患者血清中循环microRNAs表达水平及意义[J];中国肝脏病杂志(电子版);2014年02期
相关会议论文 前10条
1 王芸;陶筱川;吕应堂;;水稻MicroRNAs在水稻发育过程中的功能研究[A];湖北省植物生理学会第十五次学术研讨会论文集[C];2007年
2 周宁;陈宝元;曹洁;汤华;刘民;邓园;王彦;;microRNAs在阻塞性睡眠呼吸暂停低通气综合征患者血清中的表达及意义[A];中华医学会呼吸病学年会——2013第十四次全国呼吸病学学术会议论文汇编[C];2013年
3 韦晖;王成;范钰;许琪;张辰宇;沈岩;;偏执型精神分裂症血浆microRNAs表达谱的筛查[A];第七届全国医学生物化学与分子生物学和第四届全国临床应用生物化学与分子生物学联合学术研讨会暨医学生化分会会员代表大会论文集[C];2011年
4 单志新;余细勇;林秋雄;符永恒;邓春玉;杨敏;林曙光;;microRNAs、炎症因子及其受体基因在自发性高血压大鼠中的表达[A];第九届全国心血管药理学术会议论文集[C];2007年
5 郭士伟;刘蔼民;;小RNA(MicroRNAs)的发现、结构和功能[A];2006年中国植物逆境生理生态与分子生物学学术研讨会论文摘要汇编[C];2006年
6 郑宗基;刘晓萌;张雷;赵倩伟;李晨钟;薛耀明;;β3肾上腺素受体激动剂对C57BL/6J小鼠脂肪组织棕色化相关基因和microRNAs的影响[A];中华医学会第十二次全国内分泌学学术会议论文汇编[C];2013年
7 李海怡;高璐;左洪亮;钟国华;;昆虫microRNAs功能研究进展[A];公共植保与绿色防控[C];2010年
8 刘红;韩璐璐;谢爽;娄莹;蒋娟娟;田蕾;许莉;李一石;;连续口服厄贝沙坦对健康中国志愿者血浆MicroRNAs表达的影响[A];中国心脏大会(CHC)2011暨北京国际心血管病论坛论文集[C];2011年
9 方巧云;杨森;张学军;;MicroRNAs及其在皮肤病上的应用[A];中华医学会第14次全国皮肤性病学术年会论文汇编[C];2008年
10 韩璐璐;刘红;康健;边文彦;庞会敏;李一石;;冻存血浆中MicroRNAs稳定性评价[A];中国心脏大会(CHC)2011暨北京国际心血管病论坛论文集[C];2011年
相关博士学位论文 前10条
1 詹芸;MicroRNAs在乳腺癌侵袭转移过程中的功能与机制研究[D];北京协和医学院;2015年
2 谭明;血小板源外泌小体中microRNAs作为预测动脉粥样硬化血栓形成的机制研究[D];北京协和医学院;2016年
3 戴欣;microRNAs在胰腺癌相关性糖尿病中的表达及相关机制研究[D];上海交通大学;2013年
4 周可树;MicroRNAs在慢性淋巴增殖性疾病中的表达及其在慢性淋巴细胞白血病预后中的意义研究[D];中国协和医科大学;2010年
5 刘雯静;胰腺癌特异性microRNAs的筛选及机制研究[D];北京协和医学院;2011年
6 于双妮;胰腺癌差异表达microRNAs的鉴定及功能研究[D];北京协和医学院;2008年
7 熊薇;微泡microRNAs在肝癌诊断及发病机制中的作用研究[D];华中科技大学;2012年
8 陈娜;STAT3介导microRNAs调控的IL-9过表达在慢性淋巴细胞性白血病免疫调节机制中的研究[D];山东大学;2014年
9 高刚;氡致肺癌及肺损伤相关microRNAs的研究[D];中国疾病预防控制中心;2010年
10 张彩彩;硫化氢通过microRNAs调控血管新生的机制研究[D];复旦大学;2011年
相关硕士学位论文 前10条
1 王倩;基于双链特异性核酸酶介导的MicroRNAs检测新方法的研究[D];华东理工大学;2016年
2 唐千捷;血浆microRNAs预测氯吡格雷抗血小板疗效及心血管不良事件的研究[D];广东药科大学;2016年
3 杨翠云;基于信号放大的高灵敏腺苷与MicroRNAs电化学生物传感器的制备及研究[D];西南大学;2016年
4 杜彦丽;microRNAs对黄牛和水牛朊病毒基因转录后调控研究[D];云南大学;2016年
5 杨丹凤;以microRNAs为靶标结核病新型检测方法的建立[D];吉林农业大学;2016年
6 王晓钰;基于microRNAs对上皮连接蛋白的调控探讨升麻素抗过敏性炎症复发的机制[D];南京中医药大学;2016年
7 张继磊;炎症相关因子和microRNAs在胃MALT淋巴瘤中发病机制的探讨[D];第二军医大学;2012年
8 罗婷;microRNAs与慢性阻塞性肺疾病的研究进展[D];重庆医科大学;2015年
9 罗晓燕;桃microRNAs鉴定及内参基因的筛选[D];南京农业大学;2013年
10 肖玲;胚胎干细胞RNAs与microRNAs相互作用网络研究[D];华中师范大学;2012年
,本文编号:2218945
本文链接:https://www.wllwen.com/yixuelunwen/xxg/2218945.html